

PERIYAR UNIVERSITY

(NAAC 'A++' Grade with CGPA 3.61 (Cycle - 3)

State University - NIRF Rank 56 - State Public University Rank 25

SALEM - 636 011

CENTRE FOR DISTANCE AND ONLINE EDUCATION

(CDOE)

MASTER OF COMPUTER APPLICATIONS

SEMESTER - II

ELECTIVE – III: COMPUTER VISION

(Candidates admitted from 2024 onwards)

PERIYAR UNIVERSITY

CENTRE FOR DISTANCE AND ONLINE EDUCATION (CDOE)

MCA 2024 admission onwards

Elective Course – III

COMPUTER VISION

Prepared by:

 Centre for Distance and Online Education (CDOE)

 Periyar University

 Salem - 636011

23PCAE06 - Computer Vision

Course Objectives:

● To get understanding about Computer vision techniques behind a wide

variety of real- world applications.

● To get familiar with various Computer Vision fundamental algorithms and

how to implement and apply.

● To get an idea of how to build a computer vision application with Python language.

● To understand various machine learning techniques that are used in

computer vision tasks.

Unit-I

Basic Image Handling and Processing: PIL – the Python Imaging Library-

Matplotlib- NumPy-SciPy-Advanced example: Image de-noising. Local Image

Descriptors: Harris corner detector-SIFT - Scale-Invariant Feature Transform-

Matching Geotagged Images.

Unit-II

Image to Image Mappings:Homographies-Warping images-Creating Panoramas.

Camera Models and Augmented Reality: The Pin-hole Camera Model-Camera

Calibration-Pose Estimation from Planes and Markers-Augmented Reality.

Unit-III

Multiple View Geometry:Epipolar Geometry-Computing with Cameras and 3D

Structure- Multiple View Reconstruction-Stereo Images. Clustering Images: K-

means Clustering- Hierarchical Clustering-Spectral Clustering.

Unit-IV

Searching Images: Content based Image Retrieval-Visual Words-Indexing Images-

Searching the Database for Images-Ranking Results using Geometry-Building

Demos and Web Applications. Classifying Image Content: K-Nearest Neighbors-

Bayes Classifier- Support Vector Machines-Optical Character Recognition.

Unit-V

Image Segmentation: Graph Cuts-Segmentation using Clustering-Variational Methods.

OpenCV: Python Interface-OpenCV Basics-Processing Video-Tracking.

Text Book:

1. Programming Computer Vision with Python – Jan Erik Solem.

Reference Books:

1. Mastering OpenCV 4 with Python : A practical guide – Alberto Fernandez Villan.

LIST OF CONTENTS

UNIT CONTENTS PAGE

1

Basic Image Handling and Processing: PIL - the Python
Imaging Library - Matplotlib - NumPy- SciPy - Advanced
example: Image de-noising. Local Image Descriptors:
Harris corner detector - SIFT – Scale - Invariant
Feature
Transform - Matching Geotagged Images.

1

24

2

Image to Image Mappings: Homographies - Warping
images
- Creating Panoramas. Camera Models and Augmented
Reality: The Pin-hole Camera Model - Camera
Calibration - Pose Estimation from Planes and
Markers - Augmented
Reality.

40

52

3

Multiple View Geometry: Epipolar Geometry-Computing
with Cameras and 3D Structure - Multiple View
Reconstruction -
Stereo Images. Clustering Images: K-means
Clustering- Hierarchical Clustering-Spectral Clustering.

70

86

4

Searching Images: Content based Image Retrieval-
Visual Words-Indexing Images- Searching the Database
for Images-Ranking Results using Geometry-Building
Demos and Web Applications. Classifying Image
Content: K- Nearest Neighbors-Bayes Classifier-
Support Vector Machines-Optical Character
Recognition.

103

118

5

Image Segmentation: Graph Cuts-Segmentation
 using Clustering-Variational Methods.
OpenCV: Python Interface-OpenCV Basics-

Processing Video-Tracking.

142

170

UNIT – I

1.1 Basic Image Handling and Processing

Image processing in Python is a rapidly growing field with a wide range of

applications. It is used in a variety of industries, including Computer vision, medical

imaging, security, etc. Image processing is the field of study and application that deals with

modifying and analyzing digital images using computer algorithms. While taking

photographs is as simple as pressing a button, processing and improving those images

sometimes takes more than a few lines of code. That‟s where image processing libraries

like OpenCV come into play. OpenCV is a popular open-source package that covers a wide

range of image processing and computer vision capabilities and methods. It supports

multiple programming languages including Python, C++, and Java.

The basic steps involved in digital image processing are:

1. Image acquisition: This involves capturing an image using a digital camera or scanner, or

importing an existing image into a computer.

2. Image enhancement: This involves improving the visual quality of an image, such as

increasing contrast, reducing noise, and removing artifacts.

3. Image restoration: This involves removing degradation from an image, such as blurring,

noise, and distortion.

4. Image segmentation: This involves dividing an image into regions or segments, each of

which corresponds to a specific object or feature in the image.

5. Image representation and description: This involves representing an image in a way that

can be analyzed and manipulated by a computer, and describing the features of an image in

a compact and meaningful way.

6. Image analysis: This involves using algorithms and mathematical models to extract

information from an image, such as recognizing objects, detecting patterns, and quantifying

features.

7. Image synthesis and compression: This involves generating new images or compressing

existing images to reduce storage and transmission requirements.

8. Digital image processing is widely used in a variety of applications, including medical

imaging, remote sensing, computer vision, and multimedia.

1.1.1 Python: Pillow (a fork of PIL)

Python Imaging Library (expansion of PIL) is the de facto image processing package for

Python language. It incorporates lightweight image processing tools that aids in editing, creating

and saving images. Pillow was announced as a replacement for PIL for future usage. Pillow

supports a large number of image file formats including BMP, PNG, JPEG, and TIFF. The library

encourages adding support for newer formats in the library by creating new file decoders.

Beginning with Pillow

 Opening an image using open(): The PIL Image. Image class represents the image object.

This class provides the open() method that is used to open the image.

Example

from PIL import Image

test.png =>

location_of_image img =

Image.open(r"test.png")

 Displaying the image using show(): This method is used to display the image. For

displaying the image Pillow first converts the image to a .png format (on Windows

OS) and stores it in a temporary buffer and then displays it. Therefore, due to the

conversion of the image format to .png some properties of the original image file

format might be lost (like animation). Therefore, it is advised to use this method only

for test purposes.

Example

from PIL import Image

img =

Image.open(r"test.png")

img.show()

 Obtaining information about the opened image

Getting the mode (color mode) of the image: The mode attribute of the image tells

the

A) type and depth of the pixel in the image. A 1-bit pixel has a range of 0-1, and an 8-bit

pixel has a range of 0-255. There are different modes provided by this module. Few of them are:

Mode Descriptio

n

1 1-bit pixels, black and white

L 8-bit pixels, Greyscale

P 8-bit pixels, mapped to any other mode using a color palette

RGB 3×8-bit pixels, true color

RGBA 4×8-bit pixels, true color with transparency mask

Example Output

from PIL import Image RBGA

img =

Image.open(r"test.png")

print(img.mode)

B) Getting the size of the image: This attribute provides the size of the image. It returns a

tuple that contains width and height.

Example Output

from PIL import Image (180, 263)

img =

Image.open(r"test.png")

print(img.size)

C) Getting the format of the image: This method returns the format of the image file.

Example Output

from PIL import Image PNG

img =

Image.open(r"test.png")

print(img.format)

 Rotating an image using rotate(): After rotating the image, the sections of the

image having no pixel values are filled with black (for non-alpha images) and with

completely transparent pixels.

Example

from PIL import

Image angle = 40

img =

Image.open(r"test.png")

r_img = img.rotate(angle)

Output

 Resizing an image using resize(): Interpolation happens during the resize process,

due to which the quality of image changes whether it is being upscaled (resized to a

higher dimension than original) or downscaled (resized to a lower Image then

original). Therefore resize() should be used cautiously and while providing suitable

value for resampling argument.

Example

from PIL import

Image size = (40, 40)

img = Image.open(r"test.png")

r_img =

img.resize(size)

r_img.show(

Output

 Saving an image using save(): While using the save() method Destination_path

must have the image filename and extension as well. The extension could be

omitted in Destination_path if the extension is specified in the format argument.

Example Output

from PIL import Image (40, 40)

size = (40, 40)

img = Image.open(r"test.png")

r_img = img.resize(size, resample =

Image.BILINEAR) # resized_test.png =>

Destination_path r_img.save("resized_test.png")

Opening the new image

img =

Image.open(r"resized_test.png")

print(img.size)

1.1.2 Matplotlib, NumPy, SciPy

Matplotlib is an amazing visualization library in Python for 2D plots of arrays.

Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed

to work with the broader SciPy stack. It was introduced by John Hunter in the year 2002.

One of the greatest benefits of visualization is that it allows us visual access to huge

amounts of data in easily digestible visuals. Matplotlib consists of several plots like line, bar,

https://www.geeksforgeeks.org/python-matplotlib-an-overview/
https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/python-numpy/

scatter, histogram, etc.

Types of Matplotlib

Matplotlib comes with a wide variety of plots. Plots help to understand trends, and

patterns, and to make correlations. They‟re typically instruments for reasoning about

quantitative information. Some of the sample plots are covered here.

 Matplotlib Line Plot

 Matplotlib Bar Plot

 Matplotlib Histograms Plot

 Matplotlib Scatter Plot

 Matplotlib Pie Charts

 Matplotlib Area Plot

 Matplotlib Line Plot

By importing the matplotlib module, defines x and y values for a plotPython, plots the

data using the plot() function and it helps to display the plot by using the show() function .

The plot() creates a line plot by connecting the points defined by x and y values.

Example

importing matplotlib module

from matplotlib import pyplot as

plt # x-axis values

x = [5, 2, 9, 4, 7]

Y-axis values

y = [10, 5, 8, 4, 2]

Function to

plot plt.plot(x, y)

function to show the

plot plt.show()

Output

 Matplotlib Bar Plot

By using matplotlib library in Pythontwo, it allows us to access the functions and

classes provided by the library for plotting. There are tow lists x and y are defined . This

function creates a bar plot by taking x-axis and y-axis values as arguments and generates

the bar plot based on those values.

Example

importing matplotlib module

from matplotlib import pyplot as

plt # x-axis values

x = [5, 2, 9, 4, 7]

Y-axis values

y = [10, 5, 8, 4, 2]

Function to plot the

bar plt.bar(x, y)

function to show the

plot plt.show()

Output

 Matplotlib Histograms Plot

By using the matplotlib module defines the y-axis values for a histogram plot.

Plots in the ,histogram using the hist() function and displays the plot using the show()

function. The hist() function creates a histogram plot based on the values in the y-axis list.

https://www.geeksforgeeks.org/python-matplotlib-an-overview/

Example

importing matplotlib module

from matplotlib import pyplot as

plt # Y-axis values

y = [10, 5, 8, 4, 2]

Function to plot

histogram plt.hist(y)

Function to show the

plot plt.show()

Output

Matplotlib Scatter Plot

By imports,plot the matplotlib module, defines x and y values for a scatter plot, plots

the data using the scatter() function, and displays the plot using the show() function. The

scatter() function creates a scatter plot by plotting individual data points defined by the x

and y values.

Example

importing matplotlib module

from matplotlib import pyplot as

plt # x-axis values

x = [5, 2, 9, 4, 7]

Y-axis values

y = [10, 5, 8, 4, 2]

Function to plot

scatter plt.scatter(x, y)

function to show the

plot plt.show()

Output

 Matplotlib Pie Charts

By importing the module Matplotlib in Python to create a pie chart with three

categories and respective sizes. The plot .pie() function is used to generate the chart,

including labels, percentage formatting, and a starting angle.

Example

import matplotlib.pyplot as

plt # Data for the pie chart

labels = ['Maths', 'Physics',

'Chemistry'] sizes = [35, 35, 30]

Plotting the pie chart

plt.pie(sizes, labels=labels, autopct='%1.1f%%',

startangle=90) plt.title('Pie Chart Example')

plt.show()

Output

https://www.geeksforgeeks.org/plot-a-pie-chart-in-python-using-matplotlib/

 Matplotlib Area Plot

By importing Matplotlib we sky bluegenerated an area chart with two lines („Line 1‟ and

„Line 2‟). The area between the lines is shaded in a skyblue color with 40% transparency.

The x-axis values are in the list „x‟, and the corresponding y-axis values for each line are in

„y1‟ and „y2‟. Labels, titles legends, and legend are added, and the resulting area chart is

displayed.

Example

import matplotlib.pyplot as

plt # Data

x = [1, 2, 3, 4, 5]

y1, y2 = [10, 20, 15, 25, 30], [5, 15, 10, 20, 25]

Area Chart

plt.fill_between(x, y1, y2, color='skyblue', alpha=0.4, label='Area

1-2') plt.plot(x, y1, label='Line 1', marker='o')

plt.plot(x, y2, label='Line 2',

marker='o') # Labels and Title

plt.xlabel('X-axis'), plt.ylabel('Y-axis'), plt.title('Area Chart

Example') # Legend and Display

plt.legend(), plt.show()

Output

NumPy

Numpy is a general-purpose array-processing package. It provides a high-

performance multidimensional array object, and tools for working with these arrays. It is the

fundamental package for scientific computing with Python.

https://www.geeksforgeeks.org/python-introduction-matplotlib/

Features of NumPy

NumPy has various features including these important ones:

 A powerful N-dimensional array object

 Sophisticated (broadcasting) functions

 Tools for integrating C/C++ and Fortran code

 Useful linear algebra, Fourier transform, and random number capabilities

NumPy Array Creation

There are various ways of Numpy array creation in Python.

If we can create an array from a regular Python list or tuple using the array()

function. The type of the resulting array is deduced from the type of the elements in the

sequences.

Example

import numpy as np

Creating array from list with type float

a = np.array([[1, 2, 4], [5, 8, 7]], dtype =

'float') print ("Array created using passed

list:\n", a)

Creating array from

tuple b = np.array((1 , 3,

2))

print ("\nArray created using passed tuple:\n", b)

Output

Array created using passed

list: [[1. 2. 4.]

[5. 8. 7.]]

Array created using passed

tuple: [1 3 2]

Arrange: This function returns evenly spaced values within a given interval. Step size

is specified.

Example

Create a sequence of

integers # from 0 to 30 with

steps of 5

https://www.geeksforgeeks.org/numpy-array-creation/
https://www.geeksforgeeks.org/python-set-3-strings-lists-tuples-iterations/
https://www.geeksforgeeks.org/python-tuples/

f = np.arange(0, 30, 5)

print ("A sequential array with steps of 5:\n", f)

Output

A sequential array with steps of 5:

[0 5 10 15 20 25]

linspace: It returns evenly spaced values within a given interval.

Example

Create a sequence of 10 values in range

0 to 5 g = np.linspace(0, 5, 10)

print ("A sequential array with 10 values between" "0 and 5:\n", g)

Output

A sequential array with 10 values between0 and 5:

[0. 0.55555556 1.11111111 1.66666667 2.22222222 2.77777778

3.33333333 3.88888889 4.44444444 5.]

Reshaping array: We can use reshape method to reshape an array. Consider an

array with shape (a1, a2, a3, …, aN). We can reshape and convert it into another

array with shape (b1, b2, b3, …, bM). The only required condition is a1 x a2 x a3

… x aN = b1 x b2 x b3 … x bM. (i.e. the original size of the array remains

unchanged.)

Example

Reshaping 3X4 array to 2X2X3

array arr = np.array([[1, 2, 3, 4],

[5, 2, 4, 2],

[1, 2, 0, 1]])

newarr = arr.reshape(2, 2,

3) print ("Original array:\n",

arr) print(" ")

print ("Reshaped array:\n", newarr)

Output

Original

array: [[1 2 3

4]

[5 2 4 2]

[1 2 0 1]]

Reshaped array:

[[[1 2 3]

[4 5 2]]

[[4 2 1]

[2 0 1]]]

Flatten array: We can use flatten method to get a copy of the array collapsed into

one dimension. It accepts order argument. The default value is 𠆌’ (for

row-major order). Use 𠆏’ for column-major order.

Example

Flatten array

arr = np.array([[1, 2, 3], [4, 5,

6]]) flat_arr = arr.flatten()

print ("Original array:\n", arr)

print ("Fattened array:\n",

flat_arr)

Output

Original

array: [[1 2 3]

[4 5 6]]

Fattened

array: [1 2 3

4 5 6]

Both NumPy and SciPy are Python libraries used for used mathematical and

numerical analysis. NumPy contains array data and basic operations such as sorting,

indexing, etc whereas, SciPy consists of all the numerical code. Though NumPy provides a

number of functions that can help resolve linear algebra, Fourier transforms, etc, SciPy is

the library that actually contains fully- featured versions of these functions along with many

others. However, if you are doing scientific analysis using Python, you will need to install

both NumPy and SciPy since SciPy builds on NumPy.

https://www.edureka.co/blog/python-libraries/
https://www.edureka.co/blog/python-functions

NumPy vs SciPy

Types of

Differences

NumPy SciPy

Primary Focus

NumPy primarily focuses on

providing efficient array

manipulation and fundamental

numerical

operations.

On the other hand,

SciPy contains all the

functions that are

present in NumPy

to some extent.

Use Cases

NumPy is often used when you

need to work with arrays, and

matrices, or perform basic

numerical operations. It is

commonly used in tasks like data

manipulation, linear algebra, and

basic mathematical computations.

SciPy becomes

essential for tasks like

solving complex

differential equations,

optimizing functions,

conducting statistical

analysis, and working

with specialized

mathematical functions.

Module Structure

NumPy provides a single,

comprehensive library for array

manipulation and basic numerical

operations. It doesn‟t have a

modular structure like SciPy.

SciPy is organized into

submodules, each

catering to a specific

scientific discipline. This

modular structure

makes it easier to find

and use functions

relevant to your

specific scientific

domain.

Capabilities

* Efficient storage of data
* Multidimensional image

processing.

* Vectorization arithmetic
*Advanced optimization

routines using “optimize”.

* Broadcasting mechanisms to

handle arrays of different shapes

during

mathematical operations.

* Special

functions through

its “special

module.

Domain

Elementary linear algebra.
Spatial data structure

and

algorithm

Basic statistical functions.
Interpolation functions

with interpolate.

Fourier analysis.
Eigenvalue problems and

matrix functions.

Random number capabilities.
Sparse matrix

computations.

Evolution

NumPy is originated from the

older Numeric and Numarray

libraries. It was designed to

provide an efficient array

computing utility for Python.

Scipy is started with

Travis Oliphant wanting

to combine the

functionalities of

Numeric and another

library called

“scipy.base”. The result

was the more

comprehensive and

integrated library we

know

today.

Subpackages in SciPy:

SciPy has a number of subpackages for various scientific computations which are

shown in the following table:

Name Description

cluster Clustering algorithms

constants Physical and mathematical constants

fftpack Fast Fourier Transform routines

integrate Integration and ordinary differential equation solvers

interpolate Interpolation and smoothing splines

io Input and Output

linalg Linear algebra

ndimage N-dimensional image processing

odr Orthogonal distance regression

optimize Optimization and root-finding routines

signal Signal processing

sparse Sparse matrices and associated routines

spatial Spatial data structures and algorithms

special Special functions

stats Statistical distributions and functions

Interaction with NumPy:

SciPy builds on NumPy and therefore you can make use of NumPy functions itself to

handle arrays. To know in-depth about these functions, you can simply make use of help(),

info() or source() functions.

help():

To get information about any function, you can make use of the help() function.

There are two ways in which this function can be used:

 without any parameters

 using parameters

info():

This function returns information about the desired functions, modules, etc.

Example: scipy.info(cluster)

https://www.edureka.co/blog/python-functions

source():

The source code is returned only for objects written in Python. This function does not

return useful information in case the methods or objects are written in any other language

such as C.

Syntax: scipy.source(cluster)

Example Output

from scipy import special 1000.0

a = special.exp10(3) 8.0

print(a) 1.0

b = special.exp2(3) 0.7071067811865475

print(b)

c =

special.sindg(90)

print(c)

d =

special.cosdg(45)

print(d)

Integration Functions:

SciPy provides a number of functions to solve integrals. Ranging from ordinary

differential integrator to using trapezoidal rules to compute integrals, SciPy is a storehouse

of functions to solve all types of integrals problems.

General Integration:

SiPy provides a function named quad to calculate the integral of a function which

has one variable. The limits can be ±∞ (± inf) to indicate infinite limits.

Example Output

from scipy import special (3.9086503371292665,

4.3394735994897923e-14) from scipy import integrate

a= lambda x:special.exp10(x)

b = scipy.integrate.quad(a,

0, 1) print(b)

Double Integral Function:

SciPy provides dblquad that can be used to calculate double integrals. A double integral, as

many of us know, consists of two real variables. The dblquad() function will take

https://www.edureka.co/blog/python-programming-language

the function to be integrated as its parameter along with 4 other variables which

define the limits and the functions dy and dx.

Example Output

from scipy import integrate -1.3333333333333335,

1.4802973661668755e-14) a = lambda y, x: x*y**2

b = lambda x:

1 c = lambda

x: -1

integrate.dblquad(a, 0, 2, b, c)

Interpolation Functions:

In the field of numerical analysis, interpolation refers to constructing new data points

within a set of known data points. The SciPy library consists of a subpackage named

scipy.interpolate that consists of spline functions and classes, one-dimensional and multi-

dimensional (univariate and multivariate) interpolation classes, etc.

Univariate Interpolation:

Univariate interpolation is basically an area of curve-fitting which finds the curve that

provides an exact fit to a series of two-dimensional data points. SciPy provides interp1d

function that can be utilized to produce univariate interpolation.

Example

import matplotlib.pyplot as

plt from scipy import

interpolate x =

np.arange(5, 20)

y = np.exp(x/3.0)

f = interpolate.interp1d(x, y)x1 = np.arange(6, 12)

y1 = f(x1) # use interpolation function returned by

`interp1d` plt.plot(x, y, 'o', x1, y1, '--')

plt.show()

Output

Multivariate Interpolation:

Multivariate interpolation (spatial interpolation) is a kind interpolation on functions

that consist of more than one variables. The following example demonstrates an

example of the interp2d function.

Interpolating over a 2-D grid using the interp2d(x, y, z) function basically will use x, y,

z arrays to approximate some function f: “z = f(x, y)“ and returns a function whose call

method uses spline interpolation to find the value of new points.

Example

from scipy import

interpolate import

matplotlib.pyplot as plt x =

np.arange(0,10)

y = np.arange(10,25)

x1, y1 = np.meshgrid(x,

y) z = np.tan(xx+yy)

f = interpolate.interp2d(x, y, z,

kind='cubic') x2 = np.arange(2,8)

y2 =

np.arange(15,20)

z2 = f(xnew, ynew)

plt.plot(x, z[0, :], 'ro-', x2, z2[0, :], '-

-') plt.show()

Output

1.1.3 Denoising techniques

Denoising is the process of removing or reducing the noise or artifacts from the

image. Denoising makes the image more clear and enables us to see finer details in the

image clearly. It does not change the brightness or contrast of the image directly, but due to

the removal of artifacts, the final image may look brighter.

In this denoising process, we choose a 2-D box and slide it over the image. The

intensity of each and every pixel of the original image is recalculated using the box.

Box averaging technique:

Box averaging can be defined as the intensity of the corresponding pixel would be

replaced with the average of all intensities of its neighbour pixels spanned by the box. This

is a point operator.

Example

MATLAB

% MATLAB code for Box averaging

% Read the cameraman

image.

k1=imread("cameraman.jpg

");

% create the noise of standard

deviation 25 n=25*randn(size(k1));

%add the noise to the

image=noisy_image k2=double(k1)+n;

%display the noisy

image. imtool(k2,[]);

%averaging using [5 5] sliding box.

k3=uint8(colfilt(k2,[5 5], 'sliding',

@mean));

%display the denoised

image. imtool(k3,[]);

%averaging using [9 9] sliding box.

k4=uint8(colfilt(k2, [9 9], 'sliding', @mean));

%display the denoised

image. imtool(k4,[]);

Output

Gaussian Filter:

This kernel or filter has more weightage for the central pixel. While averaging at

the edges, more weightage is given to the edged pixel and thus it gives us the pixel value

close to the actual one, therefore, reduces the blurriness at the edges.

Example

MATLAB

% MATLAB code for denoised using

% Gaussian Filter:

k1=imread("cameraman.jpg

");

% create the noise.

n=25*randn(size(k1)

);

% add the noise to the image =

noisy_image k2=double(k1)+n;

%create and print the kernel of size

[3 3] h1=fspecial('gaussian',3,1);

h1

% convulse the image with the

kernel. k3=uint8(conv2(k2,

h1,'same'));

% display the denoised

image. imtool(k3,[]);

% create and print the kernel of size [20

20] h2=fspecial('gaussian',20,1);

h2

% convulse the image with the kernel. k4=uint8(conv2(k2,h2,'same'));

% display the denoised

image. imtool(k4,[]);

Output

Denoising by averaging noisy images:

This is a very simple and interesting technique of denoising. The requirement for using

this technique is that:

 We should have 2 or more images of the same scene or object.

 The noise of the image capturing device should be fixed. For example, the camera

has a noise of a standard deviation of 20.

Working:

Collect the multiple images captured by the same device and of the same object.

Just take the average of all the images to get the resultant image. The intensity of every

pixel will be replaced by the average of the intensities of the corresponding pixel in all those

collected images. This technique will reduce the noise and also there would not be any

blurriness in the final image.

Example

MATLAB

% MATLAB code for denoising by averaging

% Read the cameraman image: original

image. I=imread("cameraman.jpg");

% Create noise-1 of

std=40

n140*randn(size(I));

% Create first noisy_image by adding the noise to orig

image. I1=double(I)+n1;

% Create noise-2 of

std=40

n2=40*randn(size(I));

% Create 2nd noisy_image by adding the noise to orig

image. I2=double(I)+n2;

% Create noise-3 of

std=40

n3=40*randn(size(I));

% Create 3rd noisy_image by adding the noise to orig

image. I3=double(I)+n3;

% Create noise-4 of

std=40

n4=40*randn(size(I));

% Create 4th noisy_image by adding the noise to orig

image. I4=double(I)+n4;

% Create noise-5 of

std=40

n5=40*randn(size(I));

image. I5=double(I)+n5;

% Now lets see

denoising. d1=(I1+I2)/2;

d2=(I1+I2+I3)/3;

d3=(I1+I2+I3+I4)/4;

d4=(I1+I2+I3+I4+I5)/5;

%display each denoised image with original noisy

image. imtool(I1,[]);

imtool(d1,[]);

imtool(d2,[]);

imtool(d3,[]);

imtool(d4,[]);

Output

Noisy_image and Denoised-1

Noisy_image and Denoised-2

1.2 Image Descriptors

1.2.1 Harris corner detector

Harris Corner detection algorithm was developed to identify the internal corners of

an image. The corners of an image are basically identified as the regions in which there are

variations in large intensity of the gradient in all possible dimensions and directions.

Corners extracted can be a part of the image features, which can be matched with features

of other images, and can be used to extract accurate information. Harris Corner Detection

is a method to extract the corners from the input image and to extract features from the

input image.

Example

import numpy as

np import cv2 as

cv

filename =

'chessboard.png' img =

cv.imread(filename)

gray =

cv.cvtColor(img,cv.COLOR_BGR2GRAY)

gray = np.float32(gray)

dst = cv.cornerHarris(gray,2,3,0.04)

dst = cv.dilate(dst,None)

Threshold for an optimal value, it may vary depending on the

image. img[dst>0.01*dst.max()]=[0,0,255]

cv.imshow('dst',img)

if cv.waitKey(0) & 0xff ==

27: cv.destroyAllWindows()

Output:

1.2.2 Scale Invariant Feature Transform

SIFT (Scale Invariant Feature Transform) Detector is used in the detection of interest points

on an input image. It allows the identification of localized features in images which is essential

in applications such as:

 Object Recognition in Images

 Path detection and obstacle avoidance algorithms

 Gesture recognition, Mosaic generation, etc.

Fig : Sequence of steps followed in SIFT Detector

https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)
https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)
https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)

Phase I: Scale Space Peak Selection

The concept of Scale Space deals with the application of a continuous range of

Gaussian Filters to the target image such that the chosen Gaussian have differing values of

the sigma parameter. The plot thus obtained is called the Scale Space. Scale Space Peak

Selection depends on the Spatial Coincidence Assumption. According to this, if an edge is

detected at the same location in multiple scales (indicated by zero crossings in the scale

space) then we classify it as an actual edge.

Fig: Peaks are selected across Scales.

In 2D images, we can detect the Interest Points using the local maxima/minima in

Scale Space of Laplacian of Gaussian. A potential SIFT interest point is determined for a

given sigma value by picking the potential interest point and considering the pixels in the

level above (with higher sigma), the same level, and the level below (with lower sigma than

current sigma level). If the point is maxima/minima of all these 26 neighboring points, it is a

potential SIFT interest point – and it acts as a starting point for interest point detection.

Phase II: Key Point Localization

Key point localization involves the refinement of keypoints selected in the previous

stage. Low contrast key-points, unstable key points, and keypoints lying on edges are

eliminated. This is achieved by calculating the Laplacian of the keypoints found in the

previous stage. The extrema values are computed as follows:

In the above expression, D represents the Difference of Gaussian. To remove the

unstable key points, the value of z is calculated and if the function value at z is below a

threshold value then the point is excluded.

Fig: Refinement of Keypoints after Keypoint Localization

Phase III: Assigning Orientation to Keypoints

To achieve detection which is invariant with respect to the rotation of the image, orientation

needs to be calculated for the key-points. This is done by considering the neighborhood of the

keypoint and calculating the magnitude and direction of gradients of the neighborhood. Based

on the values obtained, a histogram is constructed with 36 bins to represent 360 degrees of

orientation(10 degrees per bin). Thus, if the gradient direction of a

http://mathworld.wolfram.com/Laplacian.html

certain point is, say, 67.8 degrees, a value, proportional to the gradient magnitude of this

point, is added to the bin representing 60-70 degrees. Histogram peaks above 80% are

converted into a new keypoint are used to decide the orientation of the original keypoint.

Fig: Assigning Orientation to Neighborhood and creating Orientation Histogram

Phase IV: Key Point Descriptor

Finally, for each keypoint, a descriptor is created using the keypoints neighborhood.

These descriptors are used for matching keypoints across images. A 16×16 neighborhood

of the keypoint is used for defining the descriptor of that key-point. This 16×16

neighborhood is divided into sub- block. Each such sub-block is a non-overlapping,

contiguous, 4×4 neighborhood. Subsequently, for each sub-block, an 8 bin orientation is

created similarly as discussed in Orientation Assignment. These 128 bin values (16 sub-

blocks * 8 bins per block) are represented as a vector to generate the keypoint descriptor.

Example: SIFT detector in

Python # Important NOTE: Use

opencv >=4.4 import cv2

Loading the image

img = cv2.imread('geeks.jpg')

Converting image to grayscale

gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRA

Y) # Applying SIFT detector

sift = cv.SIFT_create()

kp = sift.detect(gray, None)

Marking the keypoint on the image using

circles img=cv2.drawKeypoints(gray ,

kp , img ,

flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imwrite('image-with-keypoints.jpg', img)

Output

Fig: The image on left is the original, the image on right shows the various highlighted

interest points on the image

1.2.3 Matching Geotagged Images

Geotagged images are images with GPS coordinates either added manually by the

photographer or automatically by the camera.

Problem & Motivation

The goal of this effort is to develop a novel method which automatically finds the

geo- location of an image with an accuracy comparable to GPS devices. In most image

matching based geo-localization methods, the geo-location of a query image is obtained by

finding its matching reference images from the same view (e.g. street view images),

assuming that a reference dataset consisting of geo-tagged images is available. However,

since only small number of cities in the world are covered by ground-level imagery, it has

not been feasible to scale up ground-level image- to-image matching approaches to global

level.

On the other hand, a more complete coverage for overhead reference data such as

satellite/areial imagery and digital elevation model (DEM) is available. Therefore, an

alternative is to predict the geo-location of a query image by finding its matching reference

images from some other views. For example, predict the geo-location of a query street view

image based on a reference database of bird‟s eye view images, or vice versa.

Method

To present a new framework for cross-view image geolocalization. First, we employ

the Faster R-CNN [1] to detect buildings in the query and reference images. Next, for each

building in the query image, we retrieve the k nearest neighbors from the reference

buildings using a Siamese network trained on both positive matching image pairs and

negative pairs. To find the correct NN for each query building, we develop an efficient

multiple nearest neighbors matching method based on dominant sets. The final geo-

localization result is obtained by taking the mean GPS location of selected reference

buildings in the dominant set.

Figure: The pipeline of the proposed cross-view geo-localization method.

Building Detection

To find the matching image or images in the reference database for a query image,

we resort to match buildings between cross-view images since the semantic information of

images is more robust to viewpoint variations than appearance features. Therefore, the first

step is to detect buildings in images. We employ the Faster R-CNN [1] to achieve this goal

due to its state-of-the-art performance for object detection and real-time execution. In our

application, the detected buildings in a query image serve as query buildings for retrieving

the matching buildings in the reference images. Figure 3 shows examples of the building

detection results in both street view and bird‟s eye view images. Each detected bounding

box is assigned a score.

Figure: Building detection examples using Faster

R-CNN. Geo-localization Using Dominant Sets

A simple approach for geo-localization will be, for each detected building in the query image,

take the GPS location of its nearest neighbor (NN) in reference images, according to building

matching. However, this will not be optimal. In fact, in most cases the nearest neighbor does

not correspond to the correct match. Therefore, besides local matching (matching individual

buildings), we introduce a global constraint to help make better geo-localization decision. In a

given query image, typically there are multiple buildings and their GPS locations should be

close. Therefore, the GPS locations of their matched buildings should be close as well.

For each building in a query image, select k NNs from reference images

 Build a graph $G = (V, E, w)$

 Dominant set [3] selection

Dataset

To explore the geo-localization task using cross-view image matching, we have

collected a new dataset of street view and bird‟s eye view image pairs around downtown

Pittsburg, Orlando and part of Manhattan. For this dataset we use the list of GPS

coordinates from Google Street View Dataset [4]. There are $1,586$, $1,324$ and $5,941$

GPS locations in Pittsburg, Orlando and Manhattan, respectively. We utilize DualMaps to

generate side-by-side street view and bird‟s eye view images at each GPS location with the

same heading direction. The street view images are from Google and the overhead

45° bird‟s eye view images are from Bing. For each GPS location, four image pairs

are generated with camera heading directions of 0°, 90°, 180° and

270°. In order to learn the deep network for building matching, we annotate

corresponding buildings in every street view and bird‟s eye view image pair.

Fig: Sampled GPS locations in Pittsburg, Orlando and part of Manhattan.

Unit Summary

Basic image handling and processing involves manipulating and analyzing digital images

using various techniques and tools. At its core, image handling encompasses tasks such as

loading, displaying, and saving images in different formats. Formats like JPEG, PNG, and

GIF each have distinct properties affecting image quality and file size, influencing their

suitability for various applications. Image processing techniques are applied to enhance or

extract information from images. Common operations include adjusting brightness and

contrast, resizing, cropping, and rotating images to meet specific requirements or improve

visual appeal. These adjustments can be crucial for preparing images for publication,

analysis, or presentation.

Filtering is a fundamental processing technique used to modify or enhance image features.

Filters such as blurring, sharpening, and edge detection help in reducing noise, highlighting

important details, or preparing images for further analysis. For example, blurring filters can

smooth out details to reduce noise, while sharpening filters enhance edge clarity and

contrast.

Color space conversion is another important aspect of image processing, involving the

transformation of images from one color model to another, such as RGB (Red, Green, Blue)

to grayscale or HSV (Hue, Saturation, Value). This conversion can be useful for various

applications, including image analysis and compression. Histogram equalization is a

technique used to improve the contrast of an image by adjusting its intensity distribution. By

spreading out the most frequent intensity values, this method enhances the visibility of

features that might be less distinguishable in the original image.

Self assessment Questions:

1. Explain PIL (Python Imaging Library).

2. Briefly Explain Matplotlib.

3. Illustration NumPy.

4. Explain SciPy.

5. Illustration The Concept of Image De-Noising.

6. Briefly Explain Harris Corner Detector.

7. Explain SIFT (Scale-Invariant Feature Transform).

8. Briefly Explain Matching Geotagged Images.

Glossary

Resolution: The amount of detail an image holds, typically measured in pixels per inch (PPI)

or dots per inch (DPI). Higher resolution images have more pixels and detail.

Brightness: The overall lightness or darkness of an image. Adjusting brightness changes

the intensity of all pixels uniformly.

Contrast: The difference in brightness between the lightest and darkest areas of an image.

Increasing contrast makes light areas lighter and dark areas darker.

Cropping: The process of removing unwanted outer areas from an image, focusing on a

specific portion of the image.

Resizing: Adjusting the dimensions of an image, either enlarging or reducing its size.

Resizing can affect image quality and detail.

Rotation: The process of turning an image around a fixed point, often used to correct

orientation or apply artistic effects.

Filtering: Applying algorithms to an image to enhance or alter its appearance. Common

filters include blur, sharpen, and edge detection.

Blurring: A filter that smooths an image by reducing sharpness and detail, often used to

remove noise or create a soft effect.

Sharpening: A filter that enhances the edges and details in an image, making objects

appear more defined.

Edge Detection: A technique used to identify and highlight the boundaries between different

regions in an image. Common algorithms include the Sobel and Canny edge detectors.

Histogram: A graphical representation of the distribution of pixel intensity values in an

image. It shows the frequency of different brightness levels.

Histogram Equalization: A technique to improve image contrast by spreading out the most

frequent intensity values, making details more visible.

Color Space: A specific organization of colors, which helps in color representation and

manipulation. Common color spaces include RGB (Red, Green, Blue) and HSV (Hue,

Saturation, Value).

Grayscale: An image mode that uses shades of gray to represent an image, removing color

information and simplifying the image to variations in intensity.

Color Conversion: The process of changing an image from one color space to another,

such as from RGB to grayscale or HSV. Affine Transformation: A geometric transformation

that preserves points, straight lines, and planes. Common operations include scaling,

rotation, and translation.

Check your progress

1. Which of the following techniques is commonly used to remove Gaussian noise from

an image?

A) Median Filtering

B) Gaussian Filtering

C) Bilateral Filtering

D) Edge Detection

Answer: B) Gaussian Filtering

Explanation: Gaussian filtering is specifically designed to remove Gaussian noise by

smoothing the image, using a Gaussian kernel.

Question 2

What is the primary purpose of median filtering in image processing?

A) To enhance edges

B) To reduce Gaussian noise

C) To remove salt-and-pepper noise

D) To perform image segmentation

Answer: C) To remove salt-and-pepper noise

Explanation: Median filtering is effective at removing salt-and-pepper noise by replacing

each pixel value with the median value of the pixels in its neighborhood.

Question 3

Which of the following is a non-linear filtering technique used for image denoising?

A) Mean Filter

B) Gaussian Filter

C) Wiener Filter

D) Bilateral Filter

Answer: D) Bilateral Filter

Explanation: Bilateral filtering is a non-linear method that smooths images while preserving

edges, making it effective for denoising while maintaining sharpness.

Question 4

In image processing, what does the term ―denoising‖ refer to?

A) Enhancing the contrast of an image

B) Removing unwanted noise from an image

C) Detecting edges in an image

D) Increasing the brightness of an image

Answer: B) Removing unwanted noise from an image

Explanation: Denoising refers to the process of removing noise (unwanted variations in

pixel values) from an image to improve its quality.

Question 5

Which image processing technique is used to detect edges in an image?

A) Gaussian Blur

B) Histogram Equalization

C) Sobel Operator

D) Bilateral Filtering

Answer: C) Sobel Operator

Explanation: The Sobel operator is used to detect edges by computing the gradient of the

image intensity at each pixel, highlighting areas of high spatial frequency.

Question 6

What type of noise is most effectively reduced by wavelet-based denoising techniques?

A) Gaussian Noise

B) Poisson Noise

C) Salt-and-Pepper Noise

D) Uniform Noise

Answer: A) Gaussian Noise

Explanation: Wavelet-based denoising is particularly effective for Gaussian noise because it

leverages multi-resolution analysis to distinguish between noise and image details.

Question 7

In image processing, what does the term ―blurring‖ generally refer to?

A) Enhancing fine details in an image

B) Adding noise to an image

C) Smoothing out the image to reduce detail and noise

D) Sharpening edges in an image

Answer: C) Smoothing out the image to reduce detail and noise

Explanation: Blurring is a technique used to smooth out the image, reducing noise and

detail, which can help in various image processing tasks such as denoising.

Question 8

Which of the following filters is designed to preserve edges while smoothing an image?

A) Mean Filter

B) Gaussian Filter

C) Median Filter

D) Bilateral Filter

Answer: D) Bilateral Filter

Explanation: The bilateral filter smooths the image while preserving edges by considering

both the spatial distance and pixel intensity differences.

Question 9

Which function in OpenCV is used to apply a Gaussian filter to an image?

A) cv2.medianBlur()

B) cv2.filter2D()

C) cv2.GaussianBlur()

D) cv2.bilateralFilter()

Answer: C) cv2.GaussianBlur()

Explanation: cv2.GaussianBlur() is the OpenCV function specifically used to apply a

Gaussian filter to an image.

Question 10

What is the main advantage of using non-local means denoising over traditional methods?

A) It is computationally less expensive

B) It can better preserve fine details and textures

UNIT – I END

C) It removes more types of noise

D) It is simpler to implement

Answer: B) It can better preserve fine details and textures

Explanation: Non-local means denoising is advantageous because it leverages the

similarity of patches in the image to preserve fine details and textures better than many

traditional denoising methods.

Books

1. "Digital Image Processing", Author: Rafael C. Gonzalez, Richard E. Woods

2. "Image Processing: The Fundamentals", Author: Maria Petrou, Kosmas Petrou

3. "Digital Image Processing: A Practical Introduction", Author: William K. Pratt

Open source e-content link

https://uwaterloo.ca/vision-image-processing-lab/research-demos/image-

denoising#:~:text=One%20of%20the%20fundamental%20challenges,contaminated%20ver

sion%20 of%20the%20image.

https://www.math.ucdavis.edu/~saito/data/acha.read.s11/buades-coll-morel-siamrev.pdf

Periyar University – CDOE| Self-Learning Material

UNIT – II

2.1 Image to Image Mapping

To describes transformations between images and some practical methods for

computing them. These transformations are used for warping, image registration and finally

we look at an example of automatically creating panoramas.

A homography is a 2D projective transformation that maps points in one plane to

another. In our case, the planes are images or planar surfaces in 3D. Homographies have

many practical uses, such as registering images, rectifying images, texture warping, and

creating panoramas. We will make frequent use of them. In essence, a homography H

maps 2D points (in homogeneous coordinates) according to

Homogeneous coordinates are a useful representation for points in image planes

(and in 3D, as we will see later). Points in homogeneous coordinates are only defined up to

scale so that x = [x, y, w] = [αx, αy, αw] = [x/w, y/w, 1] all refer to the same 2D point. As a

consequence, the homography H is also only defined up to scale and has eight

independent degrees of freedom. Often points are normalized with w = 1to have a unique

identification of the image coordinates x, y. The extra coordinate makes it easy to represent

transformations with a single matrix.

Create a file homography.py and add the following functions to normalize and

convert to homogeneous coordinates.

def normalize(points):

""" Normalize a collection of points in homogeneous coordinates so that last row

= 1. """ for row in points:

row /= points[-

1] return points

def make_homog(points):

""" Convert a set of points (dim*n array) to homogeneous

coordinates. """ return vstack((points,ones((1,points.shape[1]))))

2.1.1 Homographies

Homography is a transformation that maps the points in one point to the

corresponding point in another image. The homography is a 3×3 matrix:

Periyar University – CDOE| Self-Learning Material

Importing Image Data: We will be reading the following image:

Above image is the cover page of book and it is stored as ‘img.jpg’.

Feature Matching: Feature matching means finding corresponding features from two

similar datasets based on a search distance. Now will be using sift algorithm and flann type

feature matching.

Example

creating the SIFT algorithm

sift = cv2.xfeatures2d.SIFT_create()

find the keypoints and descriptors with SIFT

kp_image, desc_image =sift.detectAndCompute(img,

None) # initializing the dictionary

index_params = dict(algorithm = 0, trees

= 5) search_params = dict()

by using Flann Matcher

flann = cv2.FlannBasedMatcher(index_params, search_params)

Periyar University – CDOE| Self-Learning Material

reading the frame

_, frame = cap.read()

converting the frame into grayscale

grayframe = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

find the keypoints and descriptors with SIFT

kp_grayframe, desc_grayframe = sift.detectAndCompute(grayframe, None)

finding nearest match with KNN algorithm

matches= flann.knnMatch(desc_image, desc_grayframe, k=2)

initialize list to keep track of only good

points good_points=[]

for m, n in matches:

#append the points

according #to distance of

descriptors if(m.distance <

0.6*n.distance):

good_points.append(m)

Output

Periyar University – CDOE| Self-Learning Material

Homography: To detect the homography of the object we have to obtain the matrix and

use function findHomography() to obtain the homograph of the object.

Example

maintaining list of index of

descriptors # in query descriptors

query_pts = np.float32([kp_image[m.queryIdx]

.pt for m in good_points]).reshape(-1, 1, 2)

maintaining list of index of

descriptors # in train descriptors

train_pts = np.float32([kp_grayframe[m.trainIdx]

.pt for m in good_points]).reshape(-1, 1, 2)

finding perspective

transformation # between two

planes

matrix, mask = cv2.findHomography(query_pts, train_pts, cv2.RANSAC, 5.0)

ravel function returns

contiguous flattened array

matches_mask =

mask.ravel().tolist()

Everything is done till now, but when we try to change or move the object in another

direction then the computer cannot able to find its homograph to deal with this we have to

use perspective transform. For example, humans can see near objects larger than far

objects, here perspective is changing. This is called Perspective transform.

Perspective transform

initializing height and width of the

image h, w = img.shape

saving all points in pts

pts = np.float32([[0, 0], [0, h], [w, h], [w, 0]]) .reshape(-1, 1, 2)

Periyar University – CDOE| Self-Learning Material

applying perspective algorithm

dst = cv2.perspectiveTransform(pts, matrix)

At the end, let’s see the output

using drawing function for the frame

homography = cv2.polylines(frame, [np.int32(dst)], True, (255, 0,

0), 3) # showing the final output

with homography

cv2.imshow("Homography",

homography)

Output

Periyar University – CDOE| Self-Learning Material

2.1.2 Warping images

The image warping process means that it is a process of distorting an image using

various transformations like scaling, rotation, translation, and more. This is also known as

geometric transformation. Using this method we can see the image from another angle.

Example: If you have an image of a rectangle, and you want to rotate it by 45

degrees. You would create a rotation matrix, apply it to the image, and obtain its rotated

version. This is an example of simple warping.

Step 1: Importing libraries

Now as we have our library installed, we have to import the libraries we are going to

use. We are going to import open-cv as we are doing these tasks in python programming

language. We would also need numpy library for numerical purposes.

The code is as follows:

import cv2

import numpy as np

Step 2: Image Loading

We have to then load the image into the programming environment to work with it.

The function used here is ‘cv2.imread’ function. The argument passed must be the path of

the image present on your desktop.

image = cv2.imread(“pathofimage”)

Step 3: Choose your source and destination points

Now that we have our image we need to choose the source points and destination

points, which means the points of image and where they should be after the transformation.

src_points = np.float32([[0,0],[100,0],[0,100],[100,100]])

dst_points = np.float32([[60, 60],[40,60],[0,40],[40,40]])

Step 4: Calculating Transformation Matrix

Based on the chosen transformation, we need to construct a transformation

matrix. For that we would use a pre-defined function called ‘getPerspectiveTransform‘.

matrix = cv2.getPerspectiveTransform(src_points, dst_points)

Step 5: Apply Transformation

Now using this matrix, we can apply transformation to the image.

warped_image = cv2.warpPerspective(image, matrix, (image.shape[1], image.shape[0]))

Periyar University – CDOE| Self-Learning Material

The ‘cv2.warpPerspective‘ function is used to apply the perspective warp to the

image using the transformation ‘matrix‘. The image.shape[1] and image.shape[0] are the

width and height of the image respectively. These are nothing but the dimensions of the

image.

Step 6: Display Result

Now display the original and warped image to see the effects of the transformation

using ‘imshow‘ function.

cv2.imshow(„Original Image‟, image)

cv2.imshow(„Warped Image‟,

warped_image) Step 7: Closing windows

We can press ‘0’ and close the image windows, which is done by the two functions

given below, where first, the script waits till we press ‘0’ key on keyboard, and then closes

the window when pressed. The functions used are ‘waitKey()‘ and ‘destroyAllWindows()‘.

cv2.waitKey(0)

cv2.destroyAllWindos()

Example

#import

libraries import

cv2

import numpy as np

image = cv2.imread("C:/Users/preet/Desktop/warp.png")

src_points = np.float32([[0, 0], [image.shape[1] - 1, 0], [0, image.shape[0] - 1],

[image.shape[1] - 1,

image.shape[0] - 1]])

dst_points = np.float32([[100, 100], [image.shape[1] - 100, 100], [0, image.shape[0] - 1],

[image.shape[1] - 1, image.shape[0] - 1]])

matrix = cv2.getPerspectiveTransform(src_points, dst_points)

warped_image = cv2.warpPerspective(image, matrix, (image.shape[1],

image.shape[0])) cv2.imshow('Original Image', image)

cv2.imshow('Warped Image',

warped_image) cv2.waitKey(0)

cv2.destroyAllWindows()

Periyar University – CDOE| Self-Learning Material

Output

2.1.3 Creating Panoramas

Two (or more) images that are taken at the same location (that is, the camera

position is the same for the images) are homographically related. This is frequently used for

creating panoramic images where several images are stitched together into one big mosaic.

In this section we will explore how this is done.

Comparing mean images. (left) without alignment. (right) with three-point rigid alignment.

RANSAC

RANSAC, short for "RANdom SAmple Consensus", is an iterative method to fit

models to data that can contain outliers. Given a model, for example a homography

between sets of points, the basic idea is that the data contains inliers, the data points that

can be described by the model, and outliers, those that do not fit the model. The standard

example is the case of fitting a line to a set of points that contains outliers. Simple least

squares fitting will fail but RANSAC can hopefully single out the inliers and obtain the

correct fit.

Periyar University – CDOE| Self-Learning Material

An example of running ransac.test(). As you can see, the algorithm selects only

points consistent with a line model and correctly finds the right solution. RANSAC is a very

useful algorithm which we will use in the next section for homography estimation and again

for other examples.

Robust homography estimation

We can use this RANSAC module for any model. All that is needed is a Python class

with fit() and get_error() methods, the rest is taken care of by ransac.py. Here we are

interested in automatically finding a homography for the panorama images using a set of

possible correspondences.

 Example

class RansacModel(object):

""" Class for testing homography fit with ransac.py

from http://www.scipy.org/Cookbook/RANSAC"""

def init (self,debug=False):

self.debug = debug def fit(self, data):

""" Fit homography to four selected

correspondences. """ # transpose to fit

H_from_points()

data =

data.T #

from points

fp = data[:3,:4] # target points tp = data[3:,:4]

http://www.scipy.org/Cookbook/RANSAC

Periyar University – CDOE| Self-Learning Material

fit homography and

return

return

H_from_points(fp,tp) def

get_error(self, data, H):

""" Apply homography to all

correspondences, return error for each

transformed point. """ data = data.T

from

points fp =

data[:3] #

target points

tp = data[3:]

transform fp

fp_transformed = dot(H,fp)

normalize hom.

coordinates for i in

range(3):

fp_transformed[i] /=

fp_transformed[2] # return error per

point

return sqrt(sum((tp-fp_transformed)**2,axis=0))

Comparing PCA-modes of unregistered and registered images. (top) the mean image and

the first nine principal components without registering the images beforehand. (bottom) the

same with the registered images.

To fit a homography using RANSAC we first need to add the following model class to

homography. This class contains a fit() method which just takes the four correspondences

selected by ransac.py (they are the first four in data) and fits a homogra phy. Remember,

four points are the minimal number to compute a homography. The method get_error()

applies the homography and returns the sum of squared distance for each correspondence

pair so that RANSAC can chose which points to keep as inliers and outliers. This is done

with a threshold on this distance. For ease of use, add the following function to

homography.py.

Periyar University – CDOE| Self-Learning Material

Stitching the images together

With the homographies between the images estimated (using RANSAC) we now

need to warp all images to a common image plane. It makes most sense to use the plane of

the center image (otherwise the distortions will be huge). One way to do this is to create a

very large image, for example filled with zeros, parallel to the central image and warp all the

images to it. Since all our images are taken with a horizontal rotation of the camera we can

use a simpler procedure, we just pad the central image with zeros to the left or right to

make room for the warped images. Add the following function which handles this to

warp.py.

Example

def

panorama(H,fromim,toim,padding=2400,delta=2400)

: """ Create horizontal panorama by blending two

images

using a homography H (preferably estimated using

RANSAC). The result is an image with the same height

as toim. ’padding’

specifies number of fill pixels and ’delta’ additional

translation. """ # check if images are grayscale or color

is_color = len(fromim.shape) == 3

homography transformation for

geometric_transform() def transf(p):

p2 = dot(H,[p[0],p[1],1])

return (p2[0]/p2[2],p2[1]/p2[2])

if H[1,2]<0: # fromim is to the

right print ’warp - right’

transform

fromim if is_color:

pad the destination image with zeros to the right

toim_t =

hstack((toim,zeros((toim.shape[0],padding,3))))

fromim_t =

zeros((toim.shape[0],toim.shape[1]+padding,toim.shape[2])) for

col in range(3):

Periyar University – CDOE| Self-Learning Material

fromim_t[:,:,col] =

ndimage.geometric_transform(fromim[:,:,col],

transf,(toim.shape[0],toim.shape[1]+padding))

else:

pad the destination image with zeros to the right

toim_t =

hstack((toim,zeros((toim.shape[0],padding))))

fromim_t =

ndimage.geometric_transform(fromim,transf,

(toim.shape[0],toim.shape[1]+padding))

else:

print ’warp - left’

add translation to compensate for padding to

the left H_delta = array([[1,0,0],[0,1,-

delta],[0,0,1]])

H =

dot(H,H_delta) #

transform fromim

if is_color:

pad the destination image with zeros to the left

toim_t = hstack((zeros((toim.shape[0],padding,3)),toim))

fromim_t =

zeros((toim.shape[0],toim.shape[1]+padding,toim.shape[2])) for

col in range(3):

fromim_t[:,:,col] =

ndimage.geometric_transform(fromim[:,:,col],

transf,(toim.shape[0],toim.shape[1]+padding))

else:

pad the destination image with zeros to the left

toim_t =

hstack((zeros((toim.shape[0],padding)),toim))

fromim_t = ndimage.geometric_transform(fromim,

transf,(toim.shape[0],toim.shape[1]+padding))

blend and return (put fromim above

toim) if is_color:

Periyar University – CDOE| Self-Learning Material

all non black pixels

alpha = ((fromim_t[:,:,0] * fromim_t[:,:,1] * fromim_t[:,:,2]) >

0) for col in range(3):

toim_t[:,:,col] = fromim_t[:,:,col]*alpha + toim_t[:,:,col]*(1-

alpha) else:

alpha = (fromim_t > 0)

toim_t = fromim_t*alpha + toim_t*(1-

alpha) return toim_t

Output

2.2.1 Pin-Hole Camera Model

The pin-hole camera model (or sometimes projective camera model) is a widely

used camera model in computer vision. It is simple and accurate enough for most

applications. The name comes from the type of camera, like a camera obscura, that collects

light through a small hole to the inside of a dark box or room. In the pin-hole camera model,

light passes through a single point, the camera center, C, before it is projected onto an

image plane. The image plane in an actual camera would be upside down behind the

camera center but the model is the same. The projection properties of a pin- hole camera

can be derived from this illustration and the assumption that the image axis are aligned with

the x and y axis of a 3D coordinate system. The optical axis of the camera then coincides

with the z axis and the projection follows from similar triangles. By adding rotation and

translation to

Periyar University – CDOE| Self-Learning Material

put a 3D point in this coordinate system before projecting, the complete projection transform

follows. The interested reader can find the details in [13] and [25, 26]. With a pin-hole camera, a

3D point X is projected to an image point x (both expressed in homogeneous coordinates) as

!x = PX .

Here the 3 ⇥ 4 matrix P is called the camera matrix (or projection matrix). Note that the 3D

point X has four elements in homogeneous coordinates, X = [X, Y,Z,W]. The scalar ! is the

inverse depth of the 3D point and is needed if we want all coordinates to be homogeneous

with the last value normalized to one.

The camera matrix

The camera matrix can be decomposed as

P = K [R | t] ,

Where R is a rotation matrix describing the orientation of the camera, t a 3D

translation vector describing the position of the camera center, and the intrinsic calibration

matrix K describing the projection properties of the camera. The calibration matrix depends

only on the camera properties and is in a general form written as

The focal length, f, is the distance between the image plane and the camera center.

The skew, s, is only used if the pixel array in the sensor is skewed and can in most cases

safely be set to zero.

This gives

where we used the alternative notation fx and fy, with fx = ↵fy.

The aspect ratio, ↵ is used for non-square pixel elements. It is often safe to assume ↵

= 1.

With this assumption the matrix becomes

Periyar University – CDOE| Self-Learning Material

the focal length, the only remaining parameters are the coordinates of the optical center

(sometimes called the principal point), the image point c = [cx, cy] where

The pin-hole camera model. The image point x is at the intersection of the image

plane and the line joining the 3D point X and the camera center C. The dashed line is the

optical axis of the camera. The optical axis intersects the image plane. Since this is usually

in the center of the image and image coordinates are measured from the top left corner,

these values are often well approximated with half the width and height of the image. It is

worth noting that in this last case the only unknown variable is the focal length f.

2.2.2 Camera Calibration

Calibrating a camera means determining the internal camera parameters, in our

case the matrix K. It is possible to extend this camera model to include radial distortion and

other artifacts if your application needs precise measurements. For most applications

however, the simple model in equation . The standard way to calibrate cameras is to take

lots of pictures of a flat checkerboard pattern.

A simple calibration method

Here we will look at a simple calibration method. Since most of the parameters can

be set using basic assumptions (square straight pixels, optical center at the center of the

image) the tricky part is getting the focal length right. For this calibration method you need a

flat rectangular calibration object (a book will do), measuring tape or a ruler and preferable

a flat surface.

 Measure the sides of your rectangular calibration object. Let’s call these dX and dY .

 Place the camera and the calibration object on a flat surface so that the camera back

and calibration object are parallel and the object is roughly in the center of the

camera’s view. You might have to raise the camera or object to get a nice alignment.

 Measure the distance from the camera to the calibration object. Let’s call this dZ.

 Take a picture and check that the setup is straight, meaning that the sides of the

Periyar University – CDOE| Self-Learning Material

calibration object align with the rows and columns of the image.

 Measure the width and height of the object in pixels. Let’s call these dx and dy.

Using similar triangles (look at Figure 4.1 to convince yourself that) the following

relation gives the focal lengths:

Figure 4.3 A simple camera calibration setup: an image of the setup used (left); the image

used for the calibration (right). Measuring the width and height of the calibration object in

the image and the physical dimensions of the setup is enough to determine the focal

length.

For the particular setup in Figure 4.3, the object was measured to be 130 by 185

mm, so dX = 130 and dY = 185. The distance from camera to object was 460 mm, so dZ =

460. If we can use any unit of measurement, it doesn’t matter, only the ratios of the

measurements matter. Using ginput() to select four points in the image, the width and

height in pixels was 722 and 1040. This means that dx

= 722 and dy = 1040. Putting these values in the relationship above gives.

It is important to note that this is for a particular image resolution. In this case the

image was 2592 ⇥ 1936 pixels. Remember that the focal length and the optical center are

measured in pixels and scale with the image resolution.

2.2.3 Pose Estimation from Planes and Markers

We saw how to estimate homographies between planes. Combining this with a

calibrated camera makes it possible to compute the camera’s pose (rotation and

translation) if the image contains a planar marker object. This is marker object can be

almost any flat object.

Periyar University – CDOE| Self-Learning Material

Let’s illustrate with an example. Consider the two top images in Figure 4.3. The

following code will extract SIFT features in both images and robustly estimate a

homography using RANSAC:

Figure 4.4 Example of computing the projection matrix for a new view using a planar object

as marker. Matching image features to an aligned marker gives a homography that can be

used to compute the pose of the camera. Template image with a gray square (top left); an

image taken from an unknown viewpoint with the same square transformed with the

estimated homography (top right); a cube transformed using the estimated camera matrix

(bottom). Now we have a homography that maps points on the marker (in this case the

book) in one image to their corresponding locations in the other image. Let’s define our 3D

coordinate system so that the marker lies in the X-Y plane (Z = 0) with the origin

somewhere on the marker.

Periyar University – CDOE| Self-Learning Material

2.2.4 Augmented Reality

Augmented reality (AR) is a collective term for placing objects and information on top

of image data. The classic example is placing a 3D computer graphics model so that it

looks like it belongs in the scene, and moves naturally with the camera motion in the case

of video. Given an image with a marker plane as in the section above, we can compute the

camera’s position and pose and use that to place computer graphics models so that they

are rendered correctly.

PyGame and PyOpenGL

PyGame is a popular package for game development that easily handles display

windows, input devices, events, and much more. PyGame is open source and available

from. It is actually a Python binding for the SDL game engine. For installation instructions,

see Appendix A.

PyOpenGL is the Python binding to the OpenGL graphics programming interface.

OpenGL comes pre-installed on almost all systems and is a crucial part for graphics

performance. OpenGL is cross platform and works the same across operating systems.

There is no way we can cover any significant portion of OpenGL programming. We

will instead just show the important parts, for example how to use camera matrices in

OpenGL and setting up a basic 3D model. Some good examples and demos are available

in the PyOpenGL-Demo package. This is a good place to start if you are new to

PyOpenGL.

We want to place a 3D model in a scene using OpenGL. To use PyGame and PyOpenGL

for this application, we need to import the following at the top of our scripts:

from OpenGL.GL import *

from OpenGL.GLU import *

import pygame,

pygame.image from

pygame.locals import *

The two main components of setting up an OpenGL scene are the projection and

model view matrices. Let’s get started and see how to create these matrices from our pin-hole

cameras.

From Camera Matrix to OpenGL Format

OpenGL uses 4 × 4 matrices to represent transforms (both 3D transforms and

projections). This is only slightly different from our use of 3 × 4 camera matrices. However,

the camera-scene

Periyar University – CDOE| Self-Learning Material

transformations are separated in two matrices, the GL_PROJECTION matrix

and the GL_MODELVIEW matrix. GL_PROJECTION handles the image formation

properties and is the equivalent of our internal calibration matrix K. GL_MODELVIEW

handles the 3D transformation of the relation between the objects and the camera. This

corresponds roughly to the R and t part of our camera matrix. One difference is that the

coordinate system is assumed to be centered at the camera so the GL_MODELVIEW

matrix actually contains the transformation that places the objects in front of the camera.

There are many peculiarities with working in OpenGL; we will comment on them as they are

encountered in the examples below.

Given that we have a camera calibrated so that the calibration matrix K is known, the

following function translates the camera properties to an OpenGL projection matrix:

Example

def set_projection_from_camera(K):

""" Set view from a camera calibration matrix.

""" glMatrixMode(GL_PROJECTION)

glLoadIdentity()

fx = K[0,0]

fy = K[1,1]

fovy = 2*arctan(0.5*height/fy)*180/pi aspect =

(width*fy)/(height*fx)

define the near and far clipping

planes near = 0.1

far = 100.0

set perspective

gluPerspective(fovy,aspect,near,

far) glViewport(0,0,width,height)

We assume the calibration to be of the simpler form with the optical center at the

image center. The first function glMatrixMode() sets the working matrix to

GL_PROJECTION and subsequent commands will modify this matrix. Then

glLoadIdentity() sets the matrix to the identity matrix, basically reseting any prior changes.

We then calculate the vertical field of view in degrees with the help of the image height and

the camera’s focal length as well as the aspect ratio. An OpenGL projection also has a

near and far clipping plane to limit the depth range of what is rendered. We just set

Periyar University – CDOE| Self-Learning Material

the near depth to be small enough to contain the nearest object and the far depth to some

large number. We use the GLU utility function gluPerspective() to set the projection matrix

and define the whole image to be the view port (essentially what is to be shown). There is

also an option to load a full projection matrix with glLoadMatrixf() similar to the model view

function below. This is useful when the simple version of the calibration matrix is not good

enough. The model view matrix should encode the relative rotation and translation that

brings the object in front of the camera (as if the camera was at the origin). It is a 4 × 4

matrix that typically looks like this:

where R is a rotation matrix with columns equal to the direction of the three

coordinate axis and t is a translation vector. When creating a model view matrix, the

rotation part will need to hold all rotations (object and coordinate system) by multiplying

together the individual components.

Placing Virtual Objects in the Image

The first thing we need to do is to add the image (the one we want to place virtual

objects in) as a background. In OpenGL this is done by creating a quadrilateral, a quad,

that fills the whole view. The easiest way to do this is to draw the quad with the projection

and model view matrices reset so that the coordinates go from – 1 to 1 in each dimension.

This function loads an image, converts it to an OpenGL texture, and places that texture on

the quad:

Script1

def draw_background(imname):

""" Draw background image using a quad. """

load background image (should be .bmp) to OpenGL

texture bg_image =

pygame.image.load(imname).convert()

bg_data = pygame.image.tostring(bg_image,"RGBX",1)

glMatrixMode(GL_MODELVIEW

) glLoadIdentity()

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

bind the texture

glEnable(GL_TEXTURE_D)

Periyar University – CDOE| Self-Learning Material

glBindTexture(GL_TEXTURE_2D,glGenTextures(1))

glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA,width,height,0,GL_RGBA,GL_UNSIGNED

_BY TE,bg_data)

glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST)

glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST)

create quad to fill the whole

window glBegin(GL_QUADS)

glTexCoord2f(0.0,0.0); glVertex3f(-1.0,-1.0,-1.0)

glTexCoord2f(1.0,0.0); glVertex3f(1.0,-1.0,-1.0)

glTexCoord2f(1.0,1.0); glVertex3f(1.0, 1.0,-1.0)

glTexCoord2f(0.0,1.0); glVertex3f(-1.0, 1.0,-

1.0) glEnd()

clear the texture

glDeleteTextures1)

The full script for generating an image like the one in Figure 4-5 looks like this (assuming

that you also have the functions introduced above in the same file):

Script2

from OpenGL.GL import *

from OpenGL.GLU import *

from OpenGL.GLUT import

* import pygame,

pygame.image from

pygame.locals import *

import pickle

width,height =

1000,747 def setup():

""" Setup window and pygame environment. """

pygame.init()

pygame.display.set_mode((width,height),OPENGL |

DOUBLEBUF) pygame.display.set_caption('OpenGL AR

Periyar University – CDOE| Self-Learning Material

demo')

load camera data

with open('ar_camera.pkl','r')

as f: K = pickle.load(f)

Rt = pickle.load(f)

setup()

draw_background('book_perspective.bmp')

set_projection_from_camera(K)

set_modelview_from_camera(Rt)

draw_teapot(0.02)

while True:

event = pygame.event.poll()

if event.type in

(QUIT,KEYDOWN): break

pygame.display.flip()

Periyar University – CDOE| Self-Learning Material

Figure 4.5 Augmented reality. Placing a computer graphics model on a book in a scene

using camera parameters computed from feature matches: the Utah teapot rendered in

place aligned with the coordinate axis (top); sanity check to see the position of the origin

(bottom).

 Unit Summary

Image mapping and augmented reality (AR) are two interconnected technologies that

enhance the way we interact with digital and physical environments. Image mapping

involves the technique of applying a digital image or texture to a 3D surface, creating a

more realistic or visually appealing representation. This process is commonly used in 3D

graphics and modeling to give surfaces textures and details, such as applying a brick

texture to a 3D wall in a video game or simulation. Image mapping helps in adding depth

and realism to virtual objects, improving user experience in digital environments.

Augmented reality (AR), on the other hand, overlays digital information onto the physical

world in real-time, enhancing the user's perception and interaction with their surroundings.

AR technology uses devices such as smartphones, tablets, or AR glasses to display digital

content, such as images, text, or 3D models, superimposed on the real world. This can

range from simple overlays, like displaying navigation directions on a windshield, to more

complex applications, such as interactive educational tools or immersive gaming

experiences where virtual elements interact with real-world objects.

In essence, while image mapping focuses on applying textures and details to digital

models, augmented reality expands the scope by integrating digital elements into the

physical environment, creating a blended experience where users can interact with both

real and virtual objects seamlessly. Both technologies leverage advanced graphics and

processing techniques to enhance visual experiences and provide users with more

immersive and interactive interactions.

Let us sum up

Image Mapping: The technique of applying a digital image or texture to a 3D surface to

create a realistic or detailed appearance. It‘s often used in 3D modeling and computer

graphics.

Periyar University – CDOE| Self-Learning Material

Texture Mapping: A method in 3D graphics where a 2D image (texture) is wrapped around

a 3D model to give it a detailed appearance. This can include patterns, colors, and visual

details.

UV Mapping: The process of mapping a 2D image (texture) onto a 3D model by

unwrapping the 3D surface into a 2D plane. This allows textures to be applied accurately to

complex shapes.

Self Assessment Questions:

1. Briefly Explain the Concept of Homographies.

2. Explain the Direct Linear Transformation Algorithm.

3. Explain the Warping Images.

4. Explain the Creating Panoramas in detail.

5. Briefly Explain the Pin-Hole Camera Model with diagram.

6. Explain the Camera Calibration in detail.

7. Pose Estimation from Planes and Markers in detail.

8. Augmented Reality in detail and discuss the advantages of AR.

Books

1. "3D Game Programming with DirectX 9.0: A Tutorial Approach", Author: Eric Lengyel

2. "Computer Graphics: Principles and Practice", Authors: John F. Hughes, Andries van

Dam, Morgan McGuire, David Sklar, James A. Fogarty, Kurt Akeley

3. "Augmented Reality: Principles and Practice", Authors: Dieter Schmalstieg, Tobias

Hollerer

Glossary

Bump Mapping: A technique used to simulate surface detail by altering the way light

interacts with the surface, creating the illusion of bumps and wrinkles without changing the

model's geometry.

Normal Mapping: A technique similar to bump mapping but uses a normal map to provide

more detailed surface textures by modifying the way light reflects off the surface, creating

more realistic visual effects.

Periyar University – CDOE| Self-Learning Material

Diffuse Map: A texture map that defines the color and texture of a surface. It is the primary

texture that determines the base color of the 3D object.

Specular Map: A texture map that controls the shininess and reflection characteristics of a

surface. It defines how reflective and shiny different parts of the surface are.

Environment Mapping: A technique used to simulate reflective surfaces by mapping an

environment image onto a 3D object, creating the illusion of reflections from the

surrounding environment.

Augmented Reality (AR): A technology that overlays digital content (such as images, text,

or 3D models) onto the real world in real-time, enhancing the user's perception of their

physical surroundings.

AR Headset: A wearable device that displays augmented reality content in the user's field

of view. Examples include Microsoft HoloLens and Magic Leap.

AR Glasses: Lightweight, glasses-like devices that project digital information onto the real

world, offering hands-free AR experiences. Examples include Google Glass.

Marker-Based AR: An AR approach that uses visual markers or patterns (such as QR

codes) to trigger the display of digital content when the marker is recognized by the AR

system.

Markerless AR: AR that does not rely on visual markers. Instead, it uses features like GPS,

accelerometers, or computer vision algorithms to place and track digital content in the real

world.

Haptic Feedback: Sensory feedback provided through touch or vibration to enhance the

interaction with AR elements. Haptic feedback can make virtual interactions feel more real

and immersive.

AR Application (App): A software application designed to deliver augmented reality

experiences. These apps utilize AR technology to blend digital content with the real world

for various purposes, such as navigation, gaming, or education.

Virtual Object: A digital entity created within an AR environment that interacts with or

enhances the physical world. Virtual objects can include 3D models, animations, or

interactive elements.

Periyar University – CDOE| Self-Learning Material

Check your progress

Question 1

What is the primary goal of image mapping in computer graphics?

A) To convert a 3D model into a 2D image

B) To apply textures to a 3D model

C) To enhance the color of an image

D) To detect edges in an image

Answer: B) To apply textures to a 3D model

Explanation: Image mapping (or texture mapping) involves applying a 2D image (texture) to

the surface of a 3D model to give it a more realistic appearance.

Question 2

Which technique is commonly used to align a virtual object with the real world in

augmented reality?

A) Depth Sensing

B) Image Recognition

C) Feature Matching

D) All of the Above

Answer: D) All of the Above

Explanation: AR systems often use a combination of depth sensing, image recognition, and

feature matching to align virtual objects with the real world accurately.

Question 3

What is the main purpose of a "marker" in augmented reality applications?

A) To increase image resolution

B) To provide a reference point for aligning virtual content

C) To apply filters to images

D) To enhance the brightness of images

Periyar University – CDOE| Self-Learning Material

Answer: B) To provide a reference point for aligning virtual content

Explanation: Markers are used in AR to serve as reference points for tracking and aligning

virtual content with the real world.

Question 4

Which OpenCV function is used to perform feature detection and matching, which is crucial

for AR applications?

A) cv2.GaussianBlur()

B) cv2.findContours()

C) cv2.SIFT()

D) cv2.threshold()

Answer: C) cv2.SIFT()

Explanation: The cv2.SIFT() function (Scale-Invariant Feature Transform) detects and

describes local features in images, which is essential for matching and tracking features in

AR applications.

Question 5

What is "homography" in the context of image mapping and augmented reality?

A) The process of merging multiple images into one

B) A transformation that maps points from one plane to another

C) A method for color correction

D) A technique for edge detection

Answer: B) A transformation that maps points from one plane to another

Explanation: Homography is a transformation used to map points between two planes,

which is fundamental in tasks such as aligning textures to surfaces and tracking objects in

AR.

Periyar University – CDOE| Self-Learning Material

Question 6

Which of the following is a common technique for tracking and overlaying virtual content on

physical objects in AR?

A) Particle Filtering

B) Optical Flow

C) Marker-based Tracking

D) Histogram Matching

Answer: C) Marker-based Tracking

Explanation: Marker-based tracking uses visual markers (like QR codes) to detect and track

the position and orientation of objects, allowing for accurate overlay of virtual content.

Question 7

In augmented reality, what does "SLAM" stand for and what is its purpose?

A) Simultaneous Localization and Mapping; to track the position of a device and map its

environment

B) Single Lens Alignment and Mapping; to correct image distortions

C) Spatial Localization and Augmented Mapping; to enhance image resolution

D) Stereoscopic Lens Alignment and Measurement; to measure depth

Answer: A) Simultaneous Localization and Mapping; to track the position of a device and

map its environment

Explanation: SLAM is used in AR to simultaneously track the position of the device and

build a map of the environment, allowing virtual content to be accurately placed and moved

in relation to the real world.

Question 8

What role does "depth sensing" play in augmented reality?

A) To enhance the color of the image

Periyar University – CDOE| Self-Learning Material

B) To measure the distance between objects in the real world

C) To apply textures to 3D models

D) To detect edges in the image

Answer: B) To measure the distance between objects in the real world

Explanation: Depth sensing measures the distance between objects in the real world, which

is crucial for accurately placing and interacting with virtual content in AR environments.

Question 9

Which of the following is an example of a common marker-based AR toolkit?

A) OpenCV

B) Vuforia

C) TensorFlow

D) Keras

Answer: B) Vuforia

Explanation: Vuforia is a popular AR toolkit that supports marker-based tracking and is

widely used for developing AR applications.

Question 10

In augmented reality, what is the purpose of "registration"?

A) To correct image distortions

B) To align virtual objects with real-world features

C) To enhance image contrast

D) To apply color maps to images

Answer: B) To align virtual objects with real-world features

Explanation: Registration is the process of aligning virtual objects with real-world features to

ensure that the virtual content appears correctly positioned and oriented in the AR

environment.

Periyar University – CDOE| Self-Learning Material

UNIT – II END

Open source e-content links

https://provenreality.com/augmented-reality-mapping-systems/

https://www.blippar.com/blog/2017/11/06/welcome-ar-city-future-maps-and-navigation

Periyar University – CDOE| Self-Learning Material

3.1 Multiple View

Geometry

UNIT – III

This chapter will show you how to handle multiple views and how to use the

geometric relationships between them to recover camera positions and 3D structure. With

images taken at different viewpoints it is possible to compute 3D scene points as well as

camera locations from feature matches. We introduce the necessary tools and show a

complete 3D reconstruction example. The last part of the chapter shows how to compute

dense depth reconstructions from stereo images.

3.1.1 Epipolar Geometry

Multiple view geometry is the field studying the relationship between cameras and

features when there are correspondences between many images that are taken from

varying viewpoints. The image features are usually interest points and we will focus on that

case throughout this chapter. The most important constellation is two-view geometry.

With two views of a scene and corresponding points in these views there are

geometric constraints on the image points as a result of the relative orientation of the

cameras, the properties of the cameras, and the position of the 3D points. These geometric

relationships are described by what is called epipolar geometry.

Fig: A single picture such as this picture of a man holding up the Leaning Tower of Pisa

can result in ambiguous scenarios. Multiple views of the same scene help us resolve these

Periyar University – CDOE| Self-Learning Material

potential ambiguities.

Above Figure, we may be initially fooled to believe that the man is holding up the

Leaning Tower of Pisa. Only by careful inspection can we tell that this is not the case and

merely an illusion based on the projection of di_erent depths onto the image plane.

However, if we were able to view this scene from a completely di_erent angle, this illusion

immediately disappears and we would instantly _gure out the correct scene layout.

Without any prior knowledge of the cameras, there is an inherent ambiguity in

that a 3D point, X, transformed with an arbitrary (4⇥4) homography H as HX will have the

same image point in a camera P H1 as the original point in the camera P. Expressed with

the camera equation, this is

x = PX = P H1HX = PˆX

Because of this ambiguity, when analyzing two view geometry we can always

transform the cameras with a homography to simplify matters. Often this homography is just

a rigid transformation to change the coordinate system. A good choice is to set the origin

and coordinate axis to align with the first camera so that

P1 = K1[I | 0] and P2 = K2[R | t]

Here we use the same notation as in Chapter 4; K1 and K2 are the calibration

matrices, R is the rotation of the second camera, and t is the translation of the second

camera. Using these camera matrices one can derive a condition for the projection of a

point X to image points x1 and x2 (with P1 and P2 respectively). This condition is what

makes it possible to recover the camera matrices from corresponding image points.

The following equation must be satisfied (5.1)

and the matrix St is the skew symmetric matrix (5.2)

Periyar University – CDOE| Self-Learning Material

Equation (5.1) is called the epipolar constraint . The matrix F in the epipolar

constraint is called the fundamental matrix and as you can see, it is expressed in

components of the two camera matrices (their relative rotation R and translation t). The

fundamental matrix has rank 2 and det(F)=0. This will be used in algorithms for estimating

F. The fundamental matrix makes it possible to compute the camera matrices and then a

3D reconstruction.

The equations above mean that the camera matrices can be recovered from F,

which in turn can be computed from point correspondences as we will see later. Without

knowing the internal calibration (K1 and K2) the camera matrices are only recoverable up to

a projective transformation. With known calibration, the reconstruction will be metric. A

metric reconstruction is a 3D reconstruction that correctly represents distances and angles.

There is one final piece of geometry needed before we can proceed to actually using this

theory on some image data.

Figure5.1 Epipolar geometry

Figure 5.1: An illustration of epipolar geometry. A 3D point X is projected to x1 and

x2, in the two views respectively. The baseline between the two camera centers, C1 and

C2, intersect the image planes in the epipoles, e1 and e2. The lines l1 and l2 are called

epipolar lines.

The epipolar lines all meet in a point, e, called the epipole. The epipole is actually

the image point corresponding to the projection of the other camera center. This point can

be outside the actual image, depending on the relative orientation of the cameras. Since

the epipole lies on all epipolar lines it must satisfy Fe1 = 0. It can therefore be computed as

the null vector of F as we will see later. The other epipole can be computed from the

relation eT 2 F = 0.

Periyar University – CDOE| Self-Learning Material

The first five of the epipolar lines are shown in the first view and the corresponding

matching points in view 2.

Here we used the helper plot function.

def plot_epipolar_line(im,F,x,epipole=None,show_epipole=True):

""" Plot the epipole and epipolar line

F*x=0 in an image. F is the

fundamental matrix and x a point in the

other image."""

m,n =

im.shape[:2] line

= dot(F,x)

epipolar line parameter and

values t = linspace(0,n,100)

lt = array([(line[2]+line[0]*tt)/(-line[1]) for tt in

t]) # take only line points inside the image

ndx = (lt>=0) & (lt <m)

plot(t[ndx],lt[ndx],linewidth=2

) if show_epipole:

if epipole is None:

epipole = compute_epipole(F)

plot(epipole[0]/epipole[2],epipole[1]/epipole[2],’r

*’)

This function parameterizes the line with the range of the x axis and removes parts of

lines above and below the image border. If the last parameter show_epipole is true,

Periyar University – CDOE| Self-Learning Material

Figure 5.4: Epipolar lines in view 1 shown for five points in view 2 of the Merton1 data. The

bottom row shows a close up of the area around the points. The lines can be seen to

converge on a point outside the image to the left. The lines show where point

correspondences can be found in the other image (the color coding matches between lines

and points).

An example of epipolar lines and their corresponding points drawn on an image

pair.

3.1.2 Computing with Cameras and 3D Structure

The previous section covered relationships between views and how to compute the

fundamental matrix and epipolar lines. Here we briefly explain the tools we need for

computing with cameras and 3D structure.

Triangulation

Given known camera matrices, a set of point correspondences can be triangulated to

recover the 3D positions of these points. The basic algorithm is fairly simple.

For two views with camera matrices P1 and P2, each with a projection x1 and x2 of

the same 3D point X (all in homogeneous coordinates), the camera equation (4.1) gives the

following relation.

There might not be an exact solution to these equations due to image noise, errors

in the camera matrices or other sources of errors. Using SVD, we can get a least squares

estimate of the 3D point.

Periyar University – CDOE| Self-Learning Material

Add the following function that computes the least squares triangulation of a point pair to

sfm.py.

Periyar University – CDOE| Self-Learning Material

This will triangulate the points in correspondence from the first two views and print

out the coordinates of the first three points to the console before plotting the recovered 3D

points next to the true values. The printout looks like this:

The estimated points are close enough.

 Figure 5.5: Triangulated points using camera matrices and point correspondences.

The estimated points are shown with black circles and the true points with red dots. (left)

view from above and to the side. (right) close up of the points from one of the building walls.

3.1.3 Multiple View Reconstruction

To compute an actual 3D reconstruction from a pair of images. Computing a 3D

reconstruction like this is usually referred to as structure from motion (SfM) since the motion

of a camera (or cameras) give you 3D structure.

Assuming the camera has been calibrated, the steps are as follows:

 Detect feature points and match them between the two images.

 Compute the fundamental matrix from the matches.

 Compute the camera matrices from the fundamental matrix.

Periyar University – CDOE| Self-Learning Material

 Triangulate the 3D points.

The goal of multiview 3D reconstruction is to infer geometrical structure of a scene

captured by a collection of images. Usually the camera position and internal parameters are

assumed to be known or they can be estimated from the set of images. By using multiple

images, 3D information can be (partially) recovered by solving a pixel-wise correspondence

problem. Since automatic correspondence estimation is usually ambiguous and incomplete

further knowledge (prior knowledge) about the object is necessary. A typical prior is

assume that the object surface is smooth.

Fig: 5.1 Multiview 3D reconstruction

Periyar University – CDOE| Self-Learning Material

The fit() method now selects eight points and uses a normalized version of the eight point

algorithm.

3D reconstruction example

In this section we will see a complete example of reconstructing a 3D scene from

start to finish. We will use two images taken with a camera with known calibration.

Let’s split the code up in a few chunks so that it is easier to follow. First we extract

features, match them and estimate a fundamental matrix and camera matrices.

Figure 5.7: Example image pair of a scene where the images are taken at different

viewpoints. This function normalizes the image points to zero mean and fixed

variance.

Periyar University – CDOE| Self-Learning Material

The calibration is known so here we just hardcode the K matrix at the beginning. As

in earlier examples, we pick out the points that belong to matches. After that we normalize

them with K1 and run the RANSAC estimation with the normalized eight point algorithm.

Since the points are normalized, this gives us an essential matrix. We make sure to keep

the index of the inliers, we will need them. From the essential matrix we compute the four

possible solutions of the second camera matrix.

Periyar University – CDOE| Self-Learning Material

From the list of camera matrices, we pick the one that has the most scene points in

front of both cameras after triangulation.

We loop through the four solutions and each time triangulate the 3D points

corresponding to the inliers. The sign of the depth is given by the third value of each image

point after projecting the triangulated X back to the images. We keep the index with the

most positive depths and also store a boolean for each point in the best solution so that we

can pick only the ones that actually are in front. Due to noise and errors in all of the

estimations done, there is a risk that some points still are behind one camera, even with the

correct camera matrices. Once we have the right solution, we triangulate the inliers and

keep the points in front of the cameras.

Periyar University – CDOE| Self-Learning Material

Now we can plot the reconstruction.

The result looks like Figure: 5.8. As you can see, the reprojected points (blue) don’t

exactly match the original feature locations (red) but they are reasonably close. It is

possible to further refine the camera matrices to improve the reconstruction and

reprojection but that is outside the scope of this simple example.

3.1.4 Stereo Images

A special case of multi-view imaging is stereo vision (or stereo imaging) where two

cameras are observing the same scene with only a horizontal (sideways) displacement

between the cameras. When the cameras are configured so that the two images have the

same image plane with the image rows vertically aligned, the image pair is said to be

rectified. This is common in robotics and such a setup is often called a stereo rig.

Computer stereo vision is the extraction of 3D information from 2D images,

such as those produced by a CCD camera. It compares data from multiple perspectives

and combines the relative positions of things in each view. As such, we use stereo vision in

applications like advanced driver assistance systems and robot navigation.

Periyar University – CDOE| Self-Learning Material

Perceiving Depth

Let’s suppose there are left and right cameras, both producing a 2D image of a

scene. Let S be a point on a real-world (3D) object in the scene:

To determine the depth of S in the composite 3D image, we first find two pixels L and

R in the left and right 2D images that correspond to it. We can assume that we know the

relative positioning of the two cameras. The computing system estimates the depth d by

triangulation using the prior knowledge of the relative distance between the cameras.

Periyar University – CDOE| Self-Learning Material

Computer Systems Achieve Stereo Vision

We need to estimate each point’s depth to produce a 3D image from two-dimensional

ones.

From there, we can determine the points’ relative depths and get a depth map:

A depth map is an image (or image channel) that contains the data on the separation

between the surfaces of scene objects from a viewpoint. This is a common way to

represent scene depths in 3D computer graphics and computer vision.

The Geometrical Basis of Stereo Vision

Epipolar geometry is the geometry of stereo vision. There are a variety of

geometric relationships between the 3D points and their projections onto the 2D images.

These relationships have been developed for the pinhole camera model. We assume that

we can represent normal using these relationships.

A 3D item is projected into a 2D (planar) projective space when captured (projected)

in an image. The issue with this so-called “planar projection” is that it causes the loss of

depth.

The disparity between the two stereo pictures is the apparent motion of things.

If we close one eye and open it quickly while keeping the other closed, we’ll observe that

objects near us move quite a bit, whereas those farther away move barely at all. We refer to

this phenomenon as “discrepancy.”

Periyar University – CDOE| Self-Learning Material

The Direction Vector

In epipolar geometry, a direction vector is a vector in three dimensions emanating from a

pixel in the image:

The direction vector, as the name suggests, is the direction from where the light ray

arrives at the pixel sensor. This line thus carries all the 3D points that could be candidate

sources for the 2D pixels in the image. In the above figure, the direction vector Ls1S1

originates from the point Ls1, which is the “left” 2D pixel corresponding to the 3D point S1 in

the scene.

Direction Vector Intersection

Direction vectors for a 3D point in the scene will cast corresponding 2D points in the

images taken from different views. A stereo pair of images will thus have direction

vectors emanating from the 2D pixels representing a common 3D point in the 3D

scene. All points on a direction vector are candidate sources. Since two vectors can

intersect at only one unique point, we take the intersection point as the source:

In the above figure, the direction vectors from the left and right images (Ls1S1 and Rs1S1,

respectively) intersect at the single source S1. This 3D source point in the scene is the

point from where light rays cast image pixels Ls1 and Rs1 in the left and right images.

Periyar University – CDOE| Self-Learning Material

Depth Calculation

We assume that we know the distance between cameras and that it’s very

small compared to the distance between the object and the cameras. Under that

assumption, we can determine the location of the 3D point in space by triangulation. The

depth is a perpendicular cast on the line joining the two cameras:

The above image shows the actual depth ds1for the point from the line joining the

two cameras. Let’s note that the angle between the line d_{s1} and the line Ls1Rs1is not

exactly 90 degrees. In reality, however, the distance Ls1Rs1, is very small compared to

ds1. This results in the angle between the line ds1and the line Ls1Rs1being approximately

90 degrees. Since we determined the location of S1 by triangulation, and we know the

relative distance Ls1Rs1, we can calculate the depth ds1 using the Pythagorean theorem:

Since s is very large compared to t, the angle \angle S1 Ms1Rs1approaches

90^{\circ}. Lengths Ls1Ms1and Ms1Rs1 are almost the same (denoted by t). Also, lengths

Ls1S1 and Rs1S1 are almost the same (denoted by s). Applying the Pythagorean theorem,

we get s^2 = {d{s1}}^2 + t^2. Solving for the depth of point S1 we get:

Periyar University – CDOE| Self-Learning Material

3.2 Clustering Images

This chapter introduces several clustering methods and shows how to use them for

clustering images for finding groups of similar images. Clustering can be used for

recognition, for dividing data sets of images and for organization and navigation. We also

look at using clustering for visualizing similarity between images.

3.2.1 K-means Clustering

K-means is a very simple clustering algorithm that tries to partition the input data in

k clusters. K-means works by iteratively refining an initial estimate of class centroids as

follows:

 Initialize centroids µi, i = 1 ...k, randomly or with some guess.

 Assign each data point to the class ci of its nearest centroid.

 Update the centroids as the average of all data points assigned to that class.

 Repeat 2 & 3 until convergence.

K-means tries to minimize the total within-class variance

where xj are the data vectors. The algorithm above is a heuristic refinement algorithm that

works fine for most cases but does not guarantee that the best solution is found. To avoid

the effects of choosing a bad centroid initialization, the algorithm is often run several times

with different initialization centroids. Then the solution with lowest variance V is selected.

The main drawback of this algorithm is that the number of clusters needs to be

decided beforehand and an inappropriate choice will give poor clustering results. The

benefits are that it is simple to implement, it is parallelizable and works well for a large

range of problems without any need for tuning.

To define a target number k, which refers to the number of centroids you need in the

dataset. A centroid is the imaginary or real location representing the center of the cluster.

This algorithm will allow us to group our feature vectors into k clusters. Each cluster should

contain images that are visually similar.

Periyar University – CDOE| Self-Learning Material

projected = array([dot(V[[0,2]],immatrix[i]-immean) for i in range(imnbr)])

Figure: 6.2

An example of k-means clustering with k = 4 of the font images using 40 principal

components.

For the visualization we will use the ImageDraw module in PIL. Assuming that you

have the projected images and image list as above, the following short script will generate a

plot like the one.

Periyar University – CDOE| Self-Learning Material

3.2.2 Hierarchical Clustering

Hierarchical clustering (or agglomerative clustering) is another simple but powerful

clustering algorithm. The idea is to build a similarity tree based on pairwise distances. The

algorithm starts with grouping the two closest objects (based on the distance between

feature vectors) and creates an "average" node in a tree with the two objects as children.

Then the next closest pair is found among the remaining objects but also including any

average nodes, and so on. At each node the distance between the two children is also

stored. Clusters can then be extracted by traversing this tree and stopping at nodes with

distance smaller some threshold that then determines the cluster size. Hierarchical

clustering has several benefits. For example, the tree structure can be used to visualize

relationships and show how clusters are related. A good feature vector will give a nice

separation in the tree. Another benefit is that the tree can be reused with different cluster

Periyar University – CDOE| Self-Learning Material

thresholds without having to recompute the tree. The drawback is that one needs to

choose a threshold if the

actual clusters are needed.

Types of Hierarchical Clustering

Basically, there are two types of hierarchical Clustering:

1. Agglomerative Clustering

2. Divisive clustering

Hierarchical Agglomerative Clustering

It is also known as the bottom-up approach or hierarchical agglomerative clustering

(HAC). A structure that is more informative than the unstructured set of clusters returned by

flat clustering. This clustering algorithm does not require us to prespecify the number of

clusters. Bottom-up algorithms treat each data as a singleton cluster at the outset and then

successively agglomerate pairs of clusters until all clusters have been merged into a single

cluster that contains all data.

Algorithm:

given a dataset (d1, d2, d3, dN) of size N

compute the distance

matrix for i=1 to N:

as the distance matrix is symmetric about

the primary diagonal so we compute only

lower # part of the primary diagonal

for j=1 to i:

dis_mat[i][j] = distance[di, dj]

each data point is a singleton

cluster repeat

merge the two cluster having minimum

distance update the distance matrix

until only a single cluster remains

Periyar University – CDOE| Self-Learning Material

Fig: Hierarchical Agglomerative Clustering

Periyar University – CDOE| Self-Learning Material

 Consider each alphabet as a single cluster and calculate the distance of one cluster

from all the other clusters.

 In the second step, comparable clusters are merged together to form a single

cluster. Let’s say cluster (B) and cluster (C) are very similar to each other therefore

we merge them in the second step similarly to cluster (D) and (E) and at last, we get

the clusters [(A), (BC), (DE), (F)]

 We recalculate the proximity according to the algorithm and merge the two nearest

clusters([(DE), (F)]) together to form new clusters as [(A), (BC), (DEF)]

 Repeating the same process; The clusters DEF and BC are comparable and merged

together to form a new cluster. We’re now left with clusters [(A), (BCDEF)].

 At last, the two remaining clusters are merged together to form a single cluster

[(ABCDEF)].

Example Program

from sklearn.cluster import

AgglomerativeClustering import numpy as np

randomly chosen dataset

X = np.array([[1, 2], [1, 4], [1, 0],[4, 2], [4, 4], [4, 0]])

here we need to mention the number of

clusters # otherwise the result will be a

single cluster

containing all the data

clustering =

AgglomerativeClustering(n_clusters=2).fit(X) # print

the class labels

print(clustering.labels_)

Output

[1, 1, 1, 0, 0, 0]

Hierarchical Divisive clustering

It is also known as a top-down approach. This algorithm also does not require to

prespecify the number of clusters. Top-down clustering requires a method for splitting a

cluster that contains the whole data and proceeds by splitting clusters recursively until

individual data have been split into singleton clusters.

Periyar University – CDOE| Self-Learning Material

Algorithm:

given a dataset (d1, d2, d3, dN) of size N

at the top we have all data in one cluster

the cluster is split using a flat clustering method eg. K-Means etc

repeat

choose the best cluster among all the clusters

to split split that cluster by the flat clustering

algorithm until each data is in its own singleton

cluster

Fig: Hierarchical Divisive clustering

3.2.3 Spectral Clustering

Spectral Clustering is a variant of the clustering algorithm that uses the connectivity

between the data points to form the clustering. It uses eigenvalues and eigenvectors of the

data matrix to forecast the data into lower dimensions space to cluster the data points. It is

based on the idea of a graph representation of data where the data point are represented

as nodes and the similarity between the data points are represented by an edge.

Periyar University – CDOE| Self-Learning Material

Building the Similarity Graph Of The Data: This step builds the Similarity Graph in the

form of an adjacency matrix which is represented by A. The adjacency matrix can be built in

the following manners:

 Epsilon-neighbourhood Graph: A parameter epsilon is fixed beforehand. Then,

each point is connected to all the points which lie in its epsilon-radius. If all the

distances between any two points are similar in scale then typically the weights of

the edges ie the distance between the two points are not stored since they do not

provide any additional information. Thus, in this case, the graph built is an undirected

and unweighted graph.

 K-Nearest Neighbours: A parameter k is fixed beforehand. Then, for two vertices u

and v, an edge is directed from u to v only if v is among the k-nearest neighbours of

u. Note that this leads to the formation of a weighted and directed graph because it is

not always the case that for each u having v as one of the k-nearest neighbours, it

will be the same case for v having u among its k-nearest neighbours. To make this

graph undirected, one of the following approaches is followed:-

 Direct an edge from u to v and from v to u if either v is among the k-nearest

neighbours of u OR u is among the k-nearest neighbours of v.

 Direct an edge from u to v and from v to u if v is among the k-nearest neighbours of

u AND u is among the k-nearest neighbours of v.

 Fully-Connected Graph: To build this graph, each point is connected with an

undirected edge-weighted by the distance between the two points to every other

point. Since this approach is used to model the local neighbourhood relationships

thus typically the Gaussian similarity metric is used to calculate the distance.

Projecting the data onto a lower Dimensional Space: This step is done to account for

the possibility that members of the same cluster may be far away in the given dimensional

space. Thus the dimensional space is reduced so that those points are closer in the

Periyar University – CDOE| Self-Learning Material

reduced dimensional space and thus can be clustered together by a traditional clustering

algorithm. It is done by computing the Graph Laplacian Matrix.

Python Code For Graph Laplacian Matrix

To compute it though first, the degree of a node needs to be defined. The degree of the ith

node is given by

Note that wij is the edge between the nodes i and j as defined in the adjacency matrix

above.

Clustering the Data: This process mainly involves clustering the reduced data by using

any traditional clustering technique – typically K-Means Clustering. First, each node is

assigned a row of the normalized of the Graph Laplacian Matrix. Then this data is clustered

using any traditional technique. To transform the clustering result, the node identifier is

retained.

Properties:

1. Assumption-Less: This clustering technique, unlike other traditional techniques do

not assume the data to follow some property. Thus this makes this technique to

answer a more- generic class of clustering problems.

2. Ease of implementation and Speed: This algorithm is easier to implement than

other clustering algorithms and is also very fast as it mainly consists of mathematical

computations.

3. Not-Scalable: Since it involves the building of matrices and computation of

eigenvalues and eigenvectors it is time-consuming for dense datasets.

4. Dimensionality Reduction: The algorithm uses eigenvalue decomposition to

reduce the dimensionality of the data, making it easier to visualize and analyze.

5. Cluster Shape: This technique can handle non-linear cluster shapes, making it

suitable for a wide range of applications.

6. Noise Sensitivity: It is sensitive to noise and outliers, which may affect the quality of

the resulting clusters.

7. Number of Clusters: The algorithm requires the user to specify the number of

clusters beforehand, which can be challenging in some cases.

8. Memory Requirements: The algorithm requires significant memory to store the

similarity matrix, which can be a limitation for large datasets.

Periyar University – CDOE| Self-Learning Material

Advantages of Spectral Clustering

1. Scalability: Spectral clustering can handle large datasets and high-dimensional data,

as it reduces the dimensionality of the data before clustering.

2. Flexibility: Spectral clustering can be applied to non-linearly separable data, as it

does not rely on traditional distance-based clustering methods.

3. Robustness: Spectral clustering can be more robust to noise and outliers in the data,

as it considers the global structure of the data, rather than just local distances

between data points.

Disadvantages of Spectral Clustering

1. Complexity: Spectral clustering can be computationally expensive, especially for

large datasets, as it requires the calculation of eigenvectors and eigenvalues.

2. Model selection: Choosing the right number of clusters and the right similarity matrix

can be challenging and may require expert knowledge or trial and error.

Periyar University – CDOE| Self-Learning Material

Output

Figure: Spectral clustering of font images using the eigenvectors of the Laplacian matrix.

Unit Summary

Multiple View Geometry focuses on understanding and computing the 3D structure from

multiple 2D images, with critical concepts like epipolar geometry and stereo imaging playing

central roles. Clustering techniques such as K-Means, Hierarchical, and Spectral Clustering are

used to group images based on their feature similarity, helping in tasks like image segmentation

and classification.

Let us sum up

Multiple View Geometry: The study of how multiple images of a scene, taken from different

viewpoints, can be used to reconstruct 3D structures and understand spatial relationships in the

scene.

Camera Calibration: The process of determining the internal parameters of a camera, such as

focal length and distortion coefficients, necessary for accurate 3D reconstruction and image

analysis.

Epipolar Geometry: The geometric relationship between two images of the same scene, where

corresponding points in each image lie on epipolar lines. It is fundamental for stereo vision and

3D reconstruction.

Stereo Vision: A technique that uses two or more cameras to capture images of the same

Periyar University – CDOE| Self-Learning Material

scene from different angles to compute depth information and create a 3D representation of the

scene.

Self Assesment Questions:

1. Briefly Explain the Concept of Epipolar Geometry with diagram.

2. Computing with Cameras and 3D Structure in detail.

3. Explain the Multiple View Reconstruction in detail.

4. Briefly Explain the Concept of Stereo Images with diagram.

5. Explain the K-Means Clustering algorithm.

6. Briefly Explain the Hierarchical Clustering in detail.

7. Explain the concept of Spectral Clustering.

Check your progress

Question 1

Which image augmentation technique involves rotating an image by a certain angle?

A) Translation

B) Scaling

C) Rotation

D) Flipping

Answer: C) Rotation

Explanation: Rotation involves turning the image around its center by a specified angle, which

helps the model learn to recognize objects from different orientations.

Question 2

What is the primary purpose of image flipping in augmentation?

A) To change the color balance of the image

B) To adjust the brightness of the image

C) To create a mirror image of the original image

D) To increase the resolution of the image

Answer: C) To create a mirror image of the original image

Explanation: Image flipping (either horizontally or vertically) creates a mirror image of the

Periyar University – CDOE| Self-Learning Material

original, which helps the model become invariant to such transformations.

Question 3

Which of the following techniques is used to adjust the size of an image?

A) Scaling

B) Translation

C) Rotation

D) Cropping

Answer: A) Scaling

Explanation: Scaling changes the size of the image by a specified factor, allowing the model to

handle objects of different sizes.

Question 4

What does the term "translation" refer to in the context of image augmentation?

A) Changing the image‘s color scheme

B) Shifting the image in the x or y direction

C) Rotating the image

D) Flipping the image horizontally

Answer: B) Shifting the image in the x or y direction

Explanation: Translation involves moving the image along the x or y axis, which helps the

model learn to recognize objects even when they are not centered.

Question 5

Which augmentation technique is particularly useful for handling variations in object size and

maintaining object position?

A) Cropping

B) Normalization

C) Rotation

D) Scaling

Periyar University – CDOE| Self-Learning Material

Answer: D) Scaling

Explanation: Scaling adjusts the size of the image, which is crucial for learning about objects at

different scales and maintaining positional context.

Question 6

In image augmentation, what does the term "crop" refer to?

A) Rotating a part of the image

B) Changing the image‘s contrast

C) Removing a portion of the image

D) Adding noise to the image

Answer: C) Removing a portion of the image

Explanation: Cropping involves cutting out a portion of the image, which can help the model

focus on specific regions and learn object details better.

Question 7

What is the purpose of applying random brightness adjustment during image augmentation?

A) To increase the image‘s contrast

B) To simulate varying lighting conditions

C) To reduce the image‘s noise

D) To resize the image

Answer: B) To simulate varying lighting conditions

Explanation: Random brightness adjustment helps the model learn to recognize objects under

different lighting conditions by varying the image‘s brightness.

Question 8

Which augmentation technique would be best for introducing variations in the sharpness of

images?

A) Gaussian Blur

Periyar University – CDOE| Self-Learning Material

B) Edge Detection

C) Histogram Equalization

D) Rotation

 Answer: A) Gaussian Blur

Explanation: Gaussian blur is used to adjust the sharpness of an image, creating variations that

help the model generalize better to images with different levels of sharpness.

Question 9

What effect does the ―shearing‖ technique have on an image during augmentation?

A) It changes the image's color balance

B) It distorts the image by shifting the pixels along a particular axis

C) It enhances the edges in the image

D) It smooths out the image

Answer: B) It distorts the image by shifting the pixels along a particular axis

Explanation: Shearing distorts the image by slanting it along a specific direction, which helps

the model learn to recognize objects even when they are skewed or distorted.

Question 10

How does image augmentation benefit machine learning models?

A) By increasing the model's size

B) By reducing the computational complexity

C) By expanding the training dataset with diverse variations

D) By simplifying the model architecture

Answer: C) By expanding the training dataset with diverse variations

Explanation: Image augmentation helps by creating variations of the original images, effectively

expanding the training dataset and improving the model‘s robustness and generalization ability.

Periyar University – CDOE| Self-Learning Material

Glossary

Structure-from-Motion (SfM): A method for reconstructing 3D structures from a series of 2D

images taken as the camera moves through space. SfM estimates both camera motion and 3D

scene structure simultaneously.

Fundamental Matrix: A matrix that describes the epipolar geometry between two views,

representing the intrinsic projective geometry of the image pair.

Essential Matrix: A matrix that captures the relative rotation and translation between two

camera views, essential for reconstructing 3D points from corresponding image points.

Homography: A transformation matrix that relates the coordinates of points in one image to their

corresponding coordinates in another image, assuming both images are of the same planar

surface.

Triangulation: The process of determining the 3D position of a point by intersecting the lines of

sight from multiple images taken from different viewpoints.

Depth Map: A representation of the distance of surfaces within a scene from the camera, often

generated from stereo vision or structured light systems.

Multi-View Stereo (MVS): Techniques that use multiple images from different viewpoints to

reconstruct dense 3D models of a scene by estimating the depth of each point.

Image Clustering: The process of grouping a set of images into clusters based on their visual

similarity, using features extracted from the images.

Feature Extraction: The process of identifying and quantifying important aspects of images,

such as color, texture, and shape, which are used for clustering.

K-Means Clustering: A popular clustering algorithm that partitions a set of images into K

clusters by minimizing the variance within each cluster.

Hierarchical Clustering: A clustering method that builds a hierarchy of clusters, either by

iteratively merging smaller clusters into larger ones (agglomerative) or by splitting larger

clusters into smaller ones (divisive).

Spectral Clustering: A technique that uses eigenvalues of similarity matrices to reduce

Periyar University – CDOE| Self-Learning Material

UNIT – III END

dimensionality before applying clustering algorithms, useful for handling complex cluster

shapes.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise): A clustering algorithm

that groups together points that are closely packed while marking points in low-density regions

as outliers.

Fuzzy Clustering: A method where each image can belong to multiple clusters with varying

degrees of membership, as opposed to hard clustering where each image belongs to only one

cluster.

Dimensionality Reduction: Techniques such as Principal Component Analysis (PCA) or t-

Distributed Stochastic Neighbor Embedding (t-SNE) used to reduce the number of features or

dimensions in the data, making clustering more effective.

Books

1."Multiple View Geometry in Computer Vision‖, Authors: Richard Hartley, Andrew Zisserman

2."Computer Vision: Algorithms and Applications", Author: Richard Szeliski

3."Pattern Recognition and Machine Learning", Author: Christopher M. Bishop

Open source e-content links

https://discuss.pytorch.org/t/data-agumentation-in-3d-images/86289

https://www.mathworks.com/matlabcentral/answers/519306-augmentation-of-data-in-image-

processing

Periyar University – CDOE| Self-Learning Material

4.1 Searching Images

UNIT – IV

This chapter shows how to use text mining techniques to search for images based

on their visual content. The basic ideas of using visual words are presented and the details

of a complete setup are explained and tested on an example image data set.

4.1.1 Content-based Image Retrieval

Content-based image retrieval (CBIR) deals with the problem of retrieving visually

similar images from a (large) database of images. This can be images with similar color,

similar textures or similar objects or scenes, basically any information contained in the

images themselves.

For high-level queries, like finding similar objects, it is not feasible to do a full

comparison (for example using feature matching) between a query image and all images in

the database. It would simply take too much time to return any results if the database is

large. In the last couple of years, researchers have successfully introduced techniques from

the world of text mining for CBIR problems making it possible to search millions of images

for similar content.

Inspiration from text mining

The vector space model The vector space model is a model for representing and

searching text documents. As we will see, it can be applied to essentially any kind of

objects, including images. The name comes from the fact that text documents are

represented with vectors that are histograms of the word frequencies in the text1. In other

words, the vector will contain the number of occurrences of every word (at the position

corresponding to that word) and zeros everywhere else. This model is also called a bag-of-

word representation since order and location of words is ignored. Documents are indexed

by doing a word count to construct the document histogram vector v, usually with common

words like "the", "and", "is" etc. ignored. These common words are called stop words. To

compensate for document length, the vectors can be normalized to unit length by dividing

with the total histogram sum. The individual components of the histogram vector are usually

weighted according to the importance of each word. Usually, the importance of a word

increases proportional to how often it appears in the document but decreases if the

word is common in all documents in a data set (or "corpus") The most common weighting

Periyar University – CDOE| Self-Learning Material

is tf-idf weighting (term frequency - inverse document frequency) where the term frequency

of a word w in document d, is

where nw is the number of occurrences of w in d. To normalize, this is divided by the total

number of occurrences of all words in the document.

The inverse document frequency is

where |D| is the number of documents in the corpus D and the denominator the number of

documents d in D containing w. Multiplying the two gives the tf-idf weight which is then the

elements in v.

4.1.2 Visual Words

To apply text mining techniques to images, we first need to create the visual

equivalent of words. This is usually done using local descriptors like the SIFT descriptor.

The idea is to quantize the descriptor space into a number of typical examples and assign

each descriptor in the image to one of those examples. These typical examples are

determined by analyzing a training set of images and can be considered as visual words

and the set of all words is then a visual vocabulary (sometimes called a visual codebook).

This vocabulary can be created specifically for a given problem or type of images or just try

to represent visual content in general.

The visual words are constructed using some clustering algorithm applied to the

feature descriptors extracted from a (large) training set of images. The most common

choice is k-means2, which is what we will use here. Visual words are nothing but a

collection of vectors in the given feature descriptor space, in the case of k-means they are

the cluster centroids. Representing an image with a histogram of visual words is then called

a bag of visual words model.

Periyar University – CDOE| Self-Learning Material

Creating a vocabulary

To create a vocabulary of visual words we first need to extract descriptors. Here we

will use the SIFT descriptor. Running the following lines of code, with imlist, as usual,

containing the filenames of the images, will give you descriptor files for each image.

Create a file vocabulary.py and add the following code for a vocabulary class and a

method for training a vocabulary on some training image data.

Periyar University – CDOE| Self-Learning Material

Output for crating Vocabulary

4.1.3 Indexing Images

To start indexing images we first need to set up a database. Indexing images in this

context means extracting descriptors from the images, converting them to visual words

using a vocabulary and storing the visual words and word histograms with information

about which image they belong to. This will make it possible to query the database using an

image and get the most similar images back as search result.

Here we will use SQLite as database. SQLite is a database which stores everything

in a single file and is very easy to set up and use. We are using it here since it is the easiest

way to get started without having to go into database and server configurations and other

details way outside the scope of this book. SQLite uses the SQL query language so the

transition should be easy if you want to use another database. To get started we need to

create tables and indexes and an indexer class to write image data to the database. First,

create a file imagesearch.py and add the following code:

Table: A simple database schema for storing images and visual words.

Periyar University – CDOE| Self-Learning Material

First of all, we need pickle for encoding and decoding these arrays to and from

strings. SQLite is imported from the pysqlite2 module (see appendix for installation details).

The Indexer class connects to to a database and stores a vocabulary object upon creation

(where the init () method is called). The del () method makes sure to close the database

connection and db_commit() writes the changes to the database file. We only need a very

simple database schema of three tables. The table imlist contains the filenames of all

indexed images, imwords contains a word index of the words, which vocabulary was used,

and which images the words appear in. Finally, imhistograms contains the full word

histograms for each image. We need those to compare images according to our vector

space model. The following method for the Indexer class creates the tables and some

useful indexes to make searching faster.

Adding images

With the database tables in place, we can start adding images to the index. To do

this, we need a method add_to_index() for our Indexer class. Add this method to

imagesearch.py.

Periyar University – CDOE| Self-Learning Material

 This method takes the image filename and a NumPy array with the descriptors

found in the image. The descriptors are projected on the vocabulary and inserted in

imwords (word by word) and imhistograms. We used two helper functions, is_indexed()

which checks if the image has been indexed already, and get_id() which gives the image id

for an image filename. Add these to imagesearch.py.

Periyar University – CDOE| Self-Learning Material

4.1.4 Searching the Database for Images

With a set of images indexed we can search the database for similar images. Here

we have used a bag-of-word representation for the whole image but the procedure

explained here is generic and can be used to find similar objects, similar faces, similar

colors etc. It all depends on the images and descriptors used. To handle searches we

introduce a Searcher class to imagesearch.py

A new Searcher object connects to the database and closes the connection upon deletion,

same as for the Indexer class before.

If the number of images is large, it is not feasible to do a full histogram comparison

across all images in the database. We need a way to find a reasonably sized set of

candidates (where "reasonable" can be determined by search response time, memory

requirements etc.). This is where the word index comes into play. Using the index we can

get a set of candidates and then do the full comparison against that set.

Periyar University – CDOE| Self-Learning Material

Using the index to get candidates

We can use our index to find all images that contain a particular word. This is just a

This gives the image ids for all images containing the word. To get candidates for

more than one word, for example all the nonzero entries in a word histogram, we can loop

over each word, get images with that word and aggregate the lists. Here we should also

keep track of how many times each image id appears in the aggregate list since this shows

how many words that matches the ones in the word histogram. This can be done with the

following Searcher method:

This method creates a list of word ids from the nonzero entries in a word histogram

of an image. Candidates for each word are retrieved and aggregated in the list candidates.

Then we create a list of tuples (word id, count) with the number of occurrences of each

word in the candidate list and sort this list (in place for efficiency) using sort() with a custom

comparison function that compares the second element in the tuple. The comparison

function is declared inline using lambda functions, convenient oneline function declarations.

The result is returned as a list of image ids with the best matching image first.

Periyar University – CDOE| Self-Learning Material

Output

ask using a histogram... [655, 656, 654, 44, 9, 653, 42, 43, 41, 12]

None of the top 10 candidates are correct. Don’t worry, we can now take any number of

elements from this list and compare histograms. As you will see, this improves things

considerably.

Querying with an image

There is not much more needed to do a full search using an image as query. To do

word histogram comparisons a Searcher object needs to be able to read the image word

histograms from the database. Add this method to the Searcher class. Again we use pickle

to convert between string and NumPy arrays, this time with loads().

Now we can combine everything into a query method:

Periyar University – CDOE| Self-Learning Material

This Searcher method takes the filename of an image, retrieves the word histogram and a

list of candidates (which should be limited to some maximum number if you have a large

data set). For each candidate, we compare histograms using standard Euclidean distance

and return a sorted list of tuples containing distance and image id.

Let’s try a query for the same image as in the previous section:

This will again print the top 10 results, including the distance, and should look something like

this:

Benchmarking and plotting the results

To get a feel for how good the search results are, we can compute the number of

correct images on the top four positions. This is the measure used to report performance

for the ukbench image set. Here’s a function that computes this score. Add it to

imagesearch.py and you can start optimizing your queries.

83

UNIT - IV Periyar University – CDOE| Self-Learning Material

This function gets the top four results and subtracts one from the index returned by

query() since the database index starts at one and the list of images at zero. Then we

compute the score using integer division, using the fact that the correct images are

consecutive in groups of four. A perfect result gives a score of 4, nothing right gives a score

of 0 and only retrieving the identical images gives a score of 1. Finding the identical image

together with two of the three other images gives a score of 3.

4.1.5 Ranking Results using Geometry

Let’s briefly look at a common way of improving results obtained using a bag of

visual words model. One of the drawbacks if the model is that the visual words

representation of an image does not contain the positions of the image features. This was

the price paid to get speed and scalability.

One way to have the feature points improve results is to re-rank the top results using

some criteria that takes the features geometric relationships into account. The most

common approach is to fit homographies between the feature locations in the query image

and the top result images.

To make this efficient the feature locations can be stored in the database and

correspondences determined by the word id of the features (this only works if the

vocabulary is large enough so that the word id matches contain mostly correct matches).

This would require a major rewrite of our database and code above and complicate the

presentation. To illustrate we will just reload the features for the top images and match

them.

Here is what a complete example of loading all the model files and re-ranking the top

results using homographies looks like.

Periyar University – CDOE| Self-Learning Material

Some example search results on the ukbench data set. The query image is shown on the

far left followed by the top five retrieved images

Periyar University – CDOE| Self-Learning Material

Fig: Shows some sample results with the regular and re-ranked top images.

First the image list, feature list (containing the filenames of the images and SIFT

feature files respectively) and the vocabulary is loaded. Then a Searcher object is created

and a regular query is performed and stored in the list res_reg. The features for the query

image are loaded. Then for each image in the result list, the features are loaded and

matched against the query image. Homographies are computed from the matches and the

number of inliers counted. If the homography fitting fails we set the inlier list to an empty

list. Finally we sort the dictionary rank that contains image index and inlier count according

to decreasing number of inliers. The result lists are printed to the console and the top

images visualized.

The output looks like:

top matches (regular): [39, 22, 74, 82, 50, 37, 38, 17, 29, 68, 52, 91, 15, 90, 31, ...]

top matches (homography): [39, 38, 37, 45, 67, 68, 74, 82, 15, 17, 50, 52, 85, 22, 87, ...]

4.1.6 Building Demos and Web Applications

In this last section on searching we’ll take a look at a simple way of building demos

and web applications with Python. By making demos as web pages, you automatically get

cross platform support and an easy way to show and share your project with minimal

Periyar University – CDOE| Self-Learning Material

requirements. In the sections below we will go through an example of a simple image

search engine.

Creating web applications with CherryPy

To build these demos we will use the CherryPy package, CherryPy is a pure Python

lightweight web server that uses an object oriented model. See the appendix for more

details on how to install and configure CherryPy. Assuming that you have studied to have

an initial idea of how CherryPy works, let’s build an image search web demo:

Fig: Some example search results with re-ranking based on geometric consistency using

homographies. For each example, the top row is the regular result and the bottom row the

re-ranked result.

Image search demo

First we need to initialize with a few html tags and load the data using Pickle. We

need the vocabulary for the Searcher object that interfaces with the database. Create a file

searchdemo.py and add the following class with two methods.

Periyar University – CDOE| Self-Learning Material

Periyar University – CDOE| Self-Learning Material

As you can see, this simple demo consists of a single class with one method for

initialization and one for the "index" page (the only page in this case). Methods are

automatically mapped to URLs and arguments to the methods can be passed directly in the

URL. The index method has a query parameter which in this case is the query image to sort

the others agains. If it is empty, a random selection of images is shown instead. The line

makes the index URL accessible and the last line starts the CherryPy web server with

configurations read from service.conf. Our configuration file for this example has the

following lines.

The first part specifies which IP address and port to use. The second part enables a local

folder for reading (in this case "tmp/"). This should be set to the folder containing your

images.

4.2 Classifying Image Content

This chapter introduces algorithms for classifying images and image content. We

look at some simple but effective methods as well as state of the art classifiers and apply

them to two-class and multi-class problems. We show examples with applications in

gesture recognition and object recognition.

4.2.1 K-Nearest Neighbors

Supervised Learning

It is the learning where the value or result that we want to predict is within the

training data (labeled data) and the value which is in data that we want to study is known as

Target or Dependent Variable or Response Variable. All the other columns in the dataset

are known as the Feature or Predictor Variable or Independent Variable.

Periyar University – CDOE| Self-Learning Material

Supervised Learning is classified into two categories:

1. Classification: Here our target variable consists of the categories.

2. Regression: Here our target variable is continuous and we usually try to find out the

line of the curve.

There are various ways to get labeled data:

1. Historical labeled Data

2. Experiment to get data: We can perform experiments to generate labeled data like

A/B Testing.

3. Crowd-sourcing

k-nearest neighbor algorithm

This algorithm is used to solve the classification model problems. K-nearest neighbor

or K- NN algorithm basically creates an imaginary boundary to classify the data. When new

data points come in, the algorithm will try to predict that to the nearest of the boundary line.

Therefore, larger k value means smother curves of separation resulting in less

complex models. Whereas, smaller k value tends to overfit the data and resulting in

complex models. Using the k-nearest neighbor algorithm we fit the historical data (or train

the model) and predict the future.

Example of the k-nearest neighbor algorithm

Import necessary modules

from sklearn.neighbors import

KNeighborsClassifier from

sklearn.model_selection import train_test_split

from sklearn.datasets import load_iris

Loading data

irisData =

load_iris()

Create feature and target

arrays X = irisData.data

y = irisData.target

Split into training and test set

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2,

random_state=42) knn = KNeighborsClassifier(n_neighbors=7)

knn.fit(X_train, y_train)

Periyar University – CDOE| Self-Learning Material

Predict on dataset which model has not seen

before print(knn.predict(X_test))

Steps are performed:

1. The k-nearest neighbor algorithm is imported from the scikit-learn package.

2. Create feature and target variables.

3. Split data into training and test data.

4. Generate a k-NN model using neighbors value.

5. Train or fit the data into the model.

6. Predict the future.

Model Accuracy

How to decide the right k-value for the dataset? We need to be familiar to data to get

the range of expected k-value, but to get the exact k-value we need to test the model for

each and every expected k-value.

Periyar University – CDOE| Self-Learning Material

Example

Import necessary modules

from sklearn.neighbors import

KNeighborsClassifier from

sklearn.model_selection import train_test_split

from sklearn.datasets import load_iris

import numpy as np

import matplotlib.pyplot as

plt irisData = load_iris()

Create feature and target

arrays X = irisData.data

y = irisData.target

Split into training and test set

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=42)

neighbors = np.arange(1, 9)

train_accuracy =

np.empty(len(neighbors))

test_accuracy =

np.empty(len(neighbors))

Loop over K values

for i, k in enumerate(neighbors): knn =

KNeighborsClassifier(n_neighbors=k) knn.fit(X_train, y_train)

Compute training and test data accuracy

train_accuracy[i] = knn.score(X_train,

y_train) test_accuracy[i] =

knn.score(X_test, y_test)

Generate plot

Periyar University – CDOE| Self-Learning Material

plt.plot(neighbors, test_accuracy, label = 'Testing dataset

Accuracy') plt.plot(neighbors, train_accuracy, label = 'Training

dataset Accuracy')

plt.legend()

plt.xlabel('n_neighbos')

plt.ylabel('Accuracy') plt.show()

Output

Periyar University – CDOE| Self-Learning Material

4.2.2 Baye’s

Bayes’ theorem (alternatively Bayes’ law or Bayes’ rule) describes the probability of an

event, based on prior knowledge of conditions that might be related to the event. For

example, if a disease is related to age, then, using Bayes’ theorem, a person's age can be

used to more accurately assess the probability that they have the disease, compared to the

assessment of the probability of disease made without knowledge of the person’s age.

Bayes’ theorem is stated mathematically as the following equation:

where A and B are events and P(B)≠0 .

 P(A∣B) is a conditional probability: the likelihood of event A occurring given that B is

true.

 P(B∣A) is also a conditional probability: the likelihood of event B occurring given that

A is true.

 P(A) and P(B) are the probabilities of observing A and B independently of each

other; this is known as the marginal probability.

For example, suppose the probability of the weather being cloudy

is 40%. Also suppose the probability of rain on a given day is 20%.

Also suppose the probability of clouds on a rainy day is 85%.

1. If it’s cloudy outside on a given day, what is the probability that it will rain that day?

Solution:

 P(cloudy) = 0.40

 P(rain) = 0.20

Periyar University – CDOE| Self-Learning Material

 P(cloudy | rain) = 0.85

we can calculate:

 P(rain | cloudy) = P(rain) * P(cloudy | rain) / P(cloudy)

 P(rain | cloudy) = 0.20 * 0.85 / 0.40

 P(rain | cloudy) = 0.425

If it’s cloudy outside on a given day, the probability that it will rain that day is 42.5%.

2. A person has undertaken a job. The probabilities of completion of the job on time with

and without rain are 0.44 and 0.95 respectively. If the probability that it will rain is 0.45, then

determine the probability that the job will be completed on time.

Solution:

Let E1 be the event that the mining job will be completed on time and E2 be the event

that it rains. We have,

P(A) = 0.45,

P(no rain) = P(B) = 1 − P(A) = 1 − 0.45 = 0.55

By multiplication law of probability,

P(E1) = 0.44

P(E2) = 0.95

Since, events A and B form partitions of the sample space S, by total probability theorem,

we have P(E) = P(A) P(E1) + P(B) P(E2)

= 0.45 × 0.44 + 0.55 × 0.95

= 0.198 + 0.5225 = 0.7205

So, the probability that the job will be completed on time is 0.684.

3. There are three urns containing 3 white and 2 black balls; 2 white and 3 black balls; 1

black and 4 white balls respectively. There is an equal probability of each urn being chosen.

One ball is equal probability chosen at random. what is the probability that a white ball is

drawn?

Solution:

Let E1, E2, and E3 be the events of choosing the first, second, and third urn

respectively. Then, P(E1) = P(E2) = P(E3) =1/3

Let E be the event that a white ball is drawn.

Periyar University – CDOE| Self-Learning Material

Then, P(E/E1) = 3/5, P(E/E2) = 2/5, P(E/E3) =

4/5

By theorem of total probability, we have

P(E) = P(E/E1) . P(E1) + P(E/E2) . P(E2) + P(E/E3) . P(E3)

= (3/5 × 1/3) + (2/5 × 1/3) + (4/5 × 1/3)

= 9/15 = 3/5

4.2.3 Support Vector Machines

An SVM model is a representation of the examples as points in space, mapped so

that the examples of the separate categories are divided by a clear gap that is as wide as

possible. In addition to performing linear classification, SVMs can efficiently perform a non-

linear classification, implicitly mapping their inputs into high-dimensional feature spaces.

classification and regression analysis. A Support Vector Machine (SVM) is a discriminative

classifier formally defined by a separating hyperplane. In other words, given labeled training

data (supervised learning), the algorithm outputs an optimal hyperplane which categorizes

new example.

Example

importing scikit learn with

make_blobs from sklearn.datasets

import make_blobs

creating datasets X containing

n_samples # Y containing two classes

X, Y = make_blobs(n_samples=500, centers=2, random_state=0,

cluster_std=0.40) import matplotlib.pyplot as plt

plotting scatters

plt.scatter(X[:, 0], X[:, 1], c=Y, s=50,

cmap='spring'); plt.show()

Periyar University – CDOE| Self-Learning Material

Output

Support vector machines do, is to not only draw a line between two classes here, but

consider a region about the line of some given width.

Example

creating linspace between -1 to

3.5 xfit = np.linspace(-1, 3.5)

plotting scatter

plt.scatter(X[:, 0], X[:, 1], c=Y, s=50, cmap='spring')

plot a line between the different sets of data

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]:

yfit = m * xfit + b

plt.plot(xfit, yfit, '-k')

plt.fill_between(xfit, yfit - d, yfit + d, edgecolor='none', color='#AAAAAA',

alpha=0.4) plt.xlim(-1, 3.5);

plt.show()

Periyar University – CDOE| Self-Learning Material

Output

Importing datasets

This is the intuition of support vector machines, which optimize a linear discriminant

model representing the perpendicular distance between the datasets, we need to import

cancer datasets as csv file where we will train two features out of all features.

Example

importing required libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

reading csv file and extracting class column

to y. x = pd.read_csv("C:\...\cancer.csv")

a = np.array(x)

y = a[:,30] # classes having 0

and 1 # extracting two features

x =

np.column_stack((x.malignant,x.benign))

569 samples and 2 features

x. shape

print (x),(y)

Output

[[122.

8

1001.]

Periyar University – CDOE| Self-Learning Material

[132.9 1326.]

[130. 1203.]

...,

[108.3 858.1]

[140.1 1265.]

[47.9

2

181.]]

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0.

,

0

.

,

0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0., 0

.

,

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0

.

,

0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 1., 1., 1

.

,

Periyar University – CDOE| Self-Learning Material

Fitting a Support Vector Machine

Support Vector Machine Classifier to these points. While the mathematical details of

the likelihood model are interesting, we’ll let read about those elsewhere. Instead, we’ll just

treat the scikit-learn algorithm as a black box which accomplishes the above task.

Example

import support vector

classifier # "Support Vector

Classifier" from sklearn.svm

import SVC clf =

SVC(kernel='linear')

fitting x samples and y

classes clf.fit(x, y)

After being fitted, the model can then be used to predict new values:

clf.predict([[120, 990]])

clf.predict([[85, 550]])

Output

array([0.])

array([1.])

The graph how does this show.

Periyar University – CDOE| Self-Learning Material

4.2.4 Optical Character Recognition

Python is widely used for analyzing the data but the data need not be in the required

format always. In such cases, we convert that format (like PDF or JPG, etc.) to the text

format, in order to analyze the data in a better way. Python offers many libraries to do this

task. There are several ways of doing this, including using libraries like PyPDF2 in Python.

The major disadvantage of using these libraries is the encoding scheme. PDF

documents can come in a variety of encodings including UTF-8, ASCII, Unicode, etc. So,

converting the PDF to text might result in the loss of data due to the encoding scheme.

Let’s see how to read all the contents of a PDF file and store it in a text document using

OCR. Firstly, we need to convert the pages of the PDF to images and then, use OCR

(Optical Character Recognition) to read the content from the image and store it in a text file.

There are two parts to the program as follows:

Part #1 deals with converting the PDF into image files. Each page of the PDF is

stored as an image file. The names of the images stored are: PDF page 1 -> page_1.jpg

PDF page 2 -> page_2.jpg PDF page 3 -> page_3.jpg …. PDF page n -> page_n.jpg.

Part #2 deals with recognizing text from the image files and storing it into a text file.

Here, we process the images and convert it into text. Once we have the text as a string

variable, we can do any processing on the text. For example, in many PDFs, when a line is

completed, but a particular word cannot be written entirely in the same line, a hyphen (‘-‘) is

added, and the word is continued on the next line.

Periyar University – CDOE| Self-Learning Material

Example Program for PDF to Text file

Requires Python 3.6 or higher due to f-strings

Import

libraries import

platform

from tempfile import

TemporaryDirectory from pathlib

import Path

import pytesseract

from pdf2image import

convert_from_path from PIL import

Image

if platform.system() == "Windows":

We may need to do some additional downloading and

setup... # Windows needs a PyTesseract Download

https://github.com/UB-Mannheim/tesseract/wiki/Downloading-Tesseract-OCR-

Engine pytesseract.pytesseract.tesseract_cmd = (r"C:\Program Files\Tesseract-

OCR\tesseract.exe")

Windows also needs

poppler_exe path_to_poppler_exe

= Path(r"C:\ ")

Put our output files in a sane place...

out_directory =

Path(r"~\Desktop").expanduser() else:

out_directory = Path("~").expanduser()

Path of the Input pdf

PDF_file =

Path(r"d.pdf")

Store all the pages of the PDF in a

Periyar University – CDOE| Self-Learning Material

variable image_file_list = []

text_file = out_directory / Path("out_text.txt")

def main():

''' Main execution point of the

program''' with TemporaryDirectory()

as tmpdir:

text = str(((pytesseract.image_to_string(Image.open(image_file)))))

 # Create a temporary directory to hold our

temporary images. """Part #1 : Converting PDF to

images"""

if platform.system() == "Windows":pdf_pages = convert_from_path (

PDF_file, 500, poppler_path=path_to_poppler_exe)

else:

pdf_pages = convert_from_path(PDF_file,

500) # Read in the PDF file at 500 DPI

Iterate through all the pages stored above

for page_enumeration, page in enumerate(pdf_pages,

start=1): # enumerate() "counts" the pages for us.

Create a file name to store the image

filename = f"{tempdir}\page_{page_enumeration:03}.jpg"

Declaring filename for each page of PDF as

JPG # For each page, filename will be:

PDF page 1 ->

page_001.jpg # PDF page

2 -> page_002.jpg # PDF

page 3 -> page_003.jpg #

....

PDF page n -> page_00n.jpg

Save the image of the page in system page.save(filename,

"JPEG") image_file_list.append(filename)

Periyar University – CDOE| Self-Learning Material

""" Part #2 - Recognizing text from the images using

OCR """ with open(text_file, "a") as output_file:

Open the file in append mode so that

All contents of all images are added to the same file

Iterate from 1 to total number of pages for image_file in

image_file_list: # Set filename to recognize text from

Again, these files will be:

page_1.jpg

page_2.jpg

....

page_n.jpg

The recognized text is stored in variable

text # Any string processing may be

applied on text # Here, basic formatting

has been done:

In many PDFs, at line ending, if a word

can't # be written fully, a 'hyphen' is

added.

The rest of the word is written in the next line

Eg: This is a sample text this word here GeeksF- or Geeks is half on first line, remaining

on next. # To remove this, we replace every '-\n' to ''text = text.replace("-\n", "")

Finally, write the processed text to the

file. output_file.write(text)

At the end of the with .. output_file

block # the file is closed after writing all

the text. # At the end of the with ..

tempdir block, the

TemporaryDirectory() we're using gets

removed! # End of main function!

Periyar University – CDOE| Self-Learning Material

if name == " main ":

We only want to run this if it's directly

executed! main()

Output: Input PDF file

Periyar University – CDOE| Self-Learning Material

Advantages of this method include:

1. Avoiding text-based conversion because of the encoding scheme resulting in loss of

data.

2. Even handwritten content in PDF can be recognized due to the usage of OCR.

3. Recognizing only particular pages of the PDF is also possible.

4. Getting the text as a variable so that any amount of required pre-processing can be

done.

Disadvantages of this method include:

1. Disk storage is used to store the images in the local system. Although these images

are tiny in size.

2. Using OCR cannot guarantee 100% accuracy. Given a computer-typed PDF

document results in very high accuracy.

3. Handwritten PDFs are still recognized, but the accuracy depends on various

factors like handwriting, page color, etc.

Periyar University – CDOE| Self-Learning Material

Unit Summary:

Searching Images and Classifying Image Content-This unit focuses on two main areas:

Searching Images through Content-Based Image Retrieval (CBIR) and Classifying Image

Content using machine learning techniques. Searching Images (Content-Based Image Retrieval

- CBIR)-Content-Based Image Retrieval (CBIR) is a process that retrieves images based on

their visual content rather than relying on text-based tags or metadata Classifying Image

Content-Classifying images involves assigning labels or categories to images based on their

content using machine learning algorithms.

Let us sum up

Content-Based Image Retrieval (CBIR) refers to a technique used to search, find, and retrieve

images from large databases based on the visual content of the images, such as color, texture,

shape, or any other visual features. Unlike traditional methods, which rely on metadata

(keywords, tags, or descriptions), CBIR extracts information directly from the image data itself.

Feature Extraction:Images are analyzed to extract visual features like color, texture, shape, or

patterns. These features represent the image as numerical data, often in the form of vectors.

Color Histograms: Represent the color distribution within an image.

Edge Detection: Captures shape information.

Texture Descriptors: Quantify surface properties or repeating patterns.

Visual Words and Bag of Visual Words (BoVW):

Inspired by text retrieval, images are represented by "visual words" based on extracted key

points, similar to how text documents are represented by words.

The Bag of Visual Words (BoVW) model clusters key points (features) into visual words,

forming a "visual dictionary" for image retrieval.

Image Indexing:

To enable fast retrieval, the extracted features are indexed. This can involve methods like hash

tables, k-d trees, or other efficient data structures that allow the system to store and quickly

Periyar University – CDOE| Self-Learning Material

access the image feature vectors.

Query Processing:

When a user submits a query image, its visual features are extracted in the same way as the

images in the database. The system compares these features with those in the database to find

similar images.

Similarity Measurement:

Various techniques are used to compare the feature vectors of the query image with those in

the database. Common methods include:

Euclidean distance: Measures the distance between feature vectors in a multi-dimensional

space.

Cosine similarity: Measures the cosine of the angle between two feature vectors.

Ranking and Retrieval:

After comparing the query image with the images in the database, the system ranks the images

based on their similarity scores, showing the most similar ones first.

Advanced systems may also use spatial verification (checking geometric consistency) to refine

the ranking.

Check your progress

1. What does Content-Based Image Retrieval (CBIR) use to find images?

A) Metadata

B) Image file names

C) Visual content like color, texture, shape

D) URL of the image

Answer: C

Explanation: CBIR retrieves images based on their visual content, such as color, texture, and

shape, instead of relying on metadata like file names or descriptions.

 2. The concept of "Visual Words" in CBIR is similar to which model in text retrieval?

A) Bag of Visual Words

B) Bag of Words

Periyar University – CDOE| Self-Learning Material

C) Word2Vec

D) One-Hot Encoding

Answer: B

Explanation: "Visual Words" is inspired by the "Bag of Words" model in text retrieval, where

images are represented as collections of visual features, just like documents are represented

by word counts.

 3.Which of the following methods is commonly used for indexing images in CBIR?

A) Hash Tables

B) Linked Lists

C) K-d Trees

D) All of the above

Answer: D

Explanation: Hash tables, k-d trees, and similar data structures are used to efficiently index and

organize images based on their feature vectors to support fast retrieval.

 4. What is the primary goal of ranking results using geometry in CBIR?

A) To improve the resolution of images

B) To verify spatial relationships between features in images

C) To enhance image color representation

D) To improve the metadata of images

Answer: B

Explanation: After retrieving visually similar images, spatial verification is done to ensure the

geometric consistency of features, such as key points or objects, within the images.

 5. In a CBIR system, which method is commonly used to compare feature vectors of images?

A) Mean Squared Error

B) Cosine Similarity

C) Euclidean Distance

D) Pearson Correlation

Answer: C

Explanation: Euclidean distance is widely used to measure the similarity between feature

vectors, as it calculates the straight-line distance between two points in multi-dimensional

Periyar University – CDOE| Self-Learning Material

space.

 6.Which algorithm classifies data based on the majority label of its nearest neighbors?

A) K-Means Clustering

B) Support Vector Machines

C) K-Nearest Neighbors (K-NN)

D) Decision Trees

Answer: C

Explanation: K-Nearest Neighbors (K-NN) is a simple classification algorithm that assigns the

label of the majority class among the k nearest neighbors in the dataset.

 7. The Bayes Classifier is based on which of the following principles?

A) Law of Large Numbers

B) Bayes' Theorem

C) Central Limit Theorem

D) Markov Chains

Answer: B

Explanation: The Bayes Classifier applies Bayes’ Theorem, which calculates the probability of

an event based on prior knowledge or evidence, often assuming conditional independence

between features.

8. Which classifier finds the hyperplane that best separates classes in a feature space?

A) K-Nearest Neighbors

B) Support Vector Machines (SVM)

C) Naive Bayes Classifier

D) Decision Trees

Answer: B

Explanation: Support Vector Machines (SVM) work by finding the hyperplane that maximizes

the margin between different classes, providing the best separation between them in the feature

space.

 9. Optical Character Recognition (OCR) is used to:

A) Convert text to speech

B) Convert handwritten or printed text in images into machine-readable text

Periyar University – CDOE| Self-Learning Material

C) Enhance the resolution of text in images

D) Identify objects in images

Answer: B

Explanation: OCR technology is used to detect and convert textual information in scanned

documents or images into machine-readable text that can be edited and searched.

10.Which method is most effective for classifying images with a known boundary between

classes?

A) K-Nearest Neighbors

B) Support Vector Machines (SVM)

C) Random Forest

D) Principal Component Analysis

Answer: B

Explanation: Support Vector Machines are highly effective when there is a clear, known

boundary between classes, as the algorithm maximizes the margin between classes in the

feature space.

Glossary

Content-Based Image Retrieval (CBIR): A technique to search and retrieve images from a

database based on their content rather than metadata or keywords. Visual features like color,

texture, and shape are used to index and find images.

Visual Words: A concept derived from the Bag of Words (BoW) model used in text retrieval,

where images are represented as a collection of visual features. These features are often

based on key points or regions of interest in the image.

Indexing Images: Creating an index or structured data that allows fast retrieval of images based

on their visual features. It can involve hashing, tree-based structures, or quantization

techniques.

Searching the Database for Images: Involves querying a database using extracted features

from an image and finding similar images by comparing feature vectors.

Periyar University – CDOE| Self-Learning Material

UNIT – IV END

Building Demos and Web Applications: Demonstrating CBIR systems via web apps, allowing

users to upload or select an image and retrieve similar ones from a database.

K-Nearest Neighbors (K-NN): A simple classification algorithm that assigns a class to an input

based on the majority class of its k nearest neighbors in feature space.

Bayes Classifier: A probabilistic classifier based on Bayes' theorem, often used when the

features are conditionally independent. It's typically used in text classification but can also be

applied to image data.

Support Vector Machines (SVM): A supervised learning algorithm used for classification tasks.

It attempts to find the hyperplane that best separates different classes in the feature space.

Optical Character Recognition (OCR): A technique used to convert scanned images or photos

of text into machine-readable text. Common in document processing applications.

Books

1. Computer Vision: Algorithms and Applications" by Richard Szeliski

ISBN: 978-1848000659 Link: Springer

 2. Content-Based Image Retrieval: A Comprehensive Review" by M. A. M. Ali and

 F .D. D. F. W. A. Rehman N: 978-3319752904

Web Resources

1. "Introduction to Content-Based Image Retrieval" - Tutorialspoint

2. "Understanding Support Vector Machines (SVM)" - Towards Data Science

3. "K-Nearest Neighbors Algorithm" - GeeksforGeeks

Periyar University – CDOE| Self-Learning Material

5.1 Image

Segmentation

UNIT – V

The process of splitting images into multiple layers, represented by a smart, pixel-

wise mask is known as Image Segmentation. It involves merging, blocking, and separating

an image from its integration level. Splitting a picture into a collection of Image Objects with

comparable properties is the first stage in image processing. Scikit-Image is the most

popular tool/module for image processing in Python.

Installation

To install this module type the below command in the terminal.

pip install scikit-image

Converting Image

Format RGB to Grayscale

rgb2gray module of skimage package is used to convert a 3-channel RGB Image to

one channel monochrome image. In order to apply filters and other processing techniques,

the expected input is a two-dimensional vector i.e. a monochrome image.

Syntax : skimage.color.rgb2gray(image)

Parameters : image : An image – RGB

format Return : The image – Grayscale

format Example

Importing Necessary

Libraries from skimage

import data

from skimage.color import

rgb2gray import matplotlib.pyplot

as plt

Setting the plot size to

15,15 plt.figure(figsize=(15,

15))

Periyar University – CDOE| Self-Learning Material

Sample Image of scikit-image

package coffee = data.coffee()

plt.subplot(1, 2, 1)

Displaying the sample

image plt.imshow(coffee)

Converting RGB image to

Monochrome gray_coffee =

rgb2gray(coffee) plt.subplot(1, 2, 2)

Displaying the sample image -

Monochrome # Format

plt.imshow(gray_coffee, cmap="gray")

Output

Converting 3-channel image data to 1-channel image data

Periyar University – CDOE| Self-Learning Material

Explanation: By using rgb2gray() function, the 3-channel RGB image of shape (400, 600,

3) is converted to a single-channel monochromatic image of shape (400, 300). We will be

using grayscale images for the proper implementation of thresholding functions. The

average of the red, green, and blue pixel values for each pixel to get the grayscale value is

a simple approach to convert a color picture 3D array to a grayscale 2D array. This creates

an acceptable gray approximation by combining the lightness or brightness contributions of

each color band.

RGB to HSV

The HSV (Hue, Saturation, Value) color model remaps the RGB basic colors into

dimensions that are simpler to comprehend for humans. The RGB color space describes

the proportions of red, green, and blue in a colour. In the HSV color system, colors are

defined in terms of Hue, Saturation, and Value.

Syntax : skimage.color.rgb2hsv(image)

Parameters : image : An image – RGB

format Return : The image – HSV format

Example

Importing Necessary

Libraries from skimage

import data

from skimage.color import

rgb2hsv import matplotlib.pyplot

as plt

Setting the plot size to

15,15 plt.figure(figsize=(15,

15))

Sample Image of scikit-image

package coffee = data.coffee()

plt.subplot(1, 2, 1)

Displaying the sample

image plt.imshow(coffee)

https://www.geeksforgeeks.org/program-change-rgb-color-model-hsv-color-model/

Periyar University – CDOE| Self-Learning Material

Converting RGB Image to HSV Image

hsv_coffee =

rgb2hsv(coffee)

plt.subplot(1, 2, 2)

Displaying the sample image - HSV

Format hsv_coffee_colorbar =

plt.imshow(hsv_coffee)

Adjusting colorbar to fit the size of the image

plt.colorbar(hsv_coffee_colorbar, fraction=0.046,

pad=0.04)

Output

Converting the RGB color format to HSV color format

Periyar University – CDOE| Self-Learning Material

Supervised Segmentation

For this type of segmentation to proceed, it requires external input. This includes

things like setting a threshold, converting formats, and correcting external biases.

Segmentation by Thresholding – Manual Input

An external pixel value ranging from 0 to 255 is used to separate the picture from the

background. This results in a modified picture that is larger or less than the specified

threshold.

Example

Importing Necessary Libraries

Displaying the sample image - Monochrome

Format from skimage import data

from skimage import filters

from skimage.color import

rgb2gray import matplotlib.pyplot

as plt

Sample Image of scikit-image

package coffee = data.coffee()

gray_coffee = rgb2gray(coffee)

Setting the plot size to

15,15 plt.figure(figsize=(15,

15))

for i in range(10):

Iterating different thresholds

Periyar University – CDOE| Self-Learning Material

binarized_gray = (gray_coffee >

i*0.1)*1 plt.subplot(5,2,i+1)

Rounding of the

threshold # value to 1

decimal point

plt.title("Threshold: >"+str(round(i*0.1,1)))

Displaying the binarized

image # of various thresholds

plt.imshow(binarized_gray, cmap =

'gray') plt.tight_layout()

Output

Explanation: The first step in this thresholding is implemented by normalizing an image

Periyar University – CDOE| Self-Learning Material

from 0 – 255 to 0 – 1. A threshold value is fixed and on the comparison, if evaluated to be

true, then we store the result as 1, otherwise 0. This globally binarized image can be used

to detect edges as well as analyze contrast and color difference.

Active Contour Segmentation

The concept of energy functional reduction underpins the active contour method. An

active contour is a segmentation approach that uses energy forces and restrictions to

separate the pixels of interest from the remainder of the picture for further processing and

analysis. The term “active contour” refers to a model in the segmentation process.

Syntax : skimage.segmentation.active_contour(image, snake)

Parameters :

 image : An image

 snake : Initial snake coordinates – for bounding the feature

 alpha : Snake length shape

 beta : Snake smoothness shape

 w_line : Controls attraction – Brightness

 w_edge : Controls attraction – Edges

 gamma : Explicit time step

Return : snake : Optimised snake with input parameter’s size

Periyar University – CDOE| Self-Learning Material

Example

Importing necessary

libraries import numpy as

np

import matplotlib.pyplot as plt

from skimage.color import

rgb2gray from skimage import

data

from skimage.filters import gaussian

from skimage.segmentation import active_contour

Sample Image of scikit-image

package astronaut =

data.astronaut() gray_astronaut =

rgb2gray(astronaut)

Applying Gaussian Filter to remove noise

gray_astronaut_noiseless =

gaussian(gray_astronaut, 1)

Localising the circle's center at 220, 110

x1 = 220 + 100*np.cos(np.linspace(0, 2*np.pi,

500)) x2 = 100 + 100*np.sin(np.linspace(0,

2*np.pi, 500))

Generating a circle based on

x1, x2 snake = np.array([x1,

x2]).T

Computing the Active Contour for the given image

astronaut_snake =

Periyar University – CDOE| Self-Learning Material

active_contour(gray_astronaut_noiseless,snake) fig =

plt.figure(figsize=(10, 10))

Adding subplots to display the

markers ax = fig.add_subplot(111)

Plotting sample image

ax.imshow(gray_astronaut_noisel

ess) # Plotting the face boundary

marker

ax.plot(astronaut_snake[:, 0], astronaut_snake[:, 1], '-b', lw=5)

Plotting the circle around face

ax.plot(snake[:, 0], snake[:, 1], '--r', lw=5)

Output

Periyar University – CDOE| Self-Learning Material

Explanation: The active contour model is among the dynamic approaches in image

segmentation that uses the image’s energy restrictions and pressures to separate regions

of interest. For segmentation, an active contour establishes a different border or curvature

for each section of the target object. The active contour model is a technique for minimizing

the energy function resulting from external and internal forces. An exterior force is specified

as curves or surfaces, while an interior force is defined as picture data. The external force is

a force that allows initial outlines to automatically transform into the forms of objects in

pictures.

Unsupervised Segmentation

Mark Boundaries

This technique produces an image with highlighted borders between labeled areas,

where the pictures were segmented using the SLIC method.

skimage.segmentation.mark_boundaries() function is to return image with boundaries

between labeled regions.

Parameters:

 image : An image

 label_img : Label array with marked regions

 color : RGB color of boundaries

 outline_color : RGB color of surrounding

boundaries Return: marked: An image with

boundaries are marked Example

Importing required boundaries

from skimage.segmentation import slic,

mark_boundaries from skimage.data import

astronaut

Setting the plot figure as 15,

15 plt.figure(figsize=(15, 15))

Sample Image of scikit-image

package astronaut = astronaut()

Periyar University – CDOE| Self-Learning Material

Applying SLIC

segmentation # for the edges

to be drawn over

astronaut_segments = slic(astronaut, n_segments=100,

compactness=1) plt.subplot(1, 2, 1)

Plotting the original

image

plt.imshow(astronaut)

Detecting boundaries for

labels plt.subplot(1, 2, 2)

Plotting the outpu t of marked_boundaries

function i.e. the image with segmented boundaries

plt.imshow(mark_boundaries(astronaut,

astronaut_segments))

Periyar University – CDOE| Self-Learning Material

Explanation: We cluster the image into 100 segments with compactness = 1 and this

segmented image will act as a labeled array for the mark_boundaries() function. Each

segment of the clustered image is differentiated by an integer value and the result of

mark_boundaries is the superimposed boundaries between the labels.

Simple Linear Iterative Clustering

By combining pixels in the image plane based on their color similarity and proximity,

this method generates superpixels. Simple Linear Iterative Clustering is the most up-to-date

approach for segmenting superpixels, and it takes very little computing power. In a nutshell,

the technique clusters pixels in a five-dimensional color and picture plane space to create

small, nearly uniform super pixels.

skimage.segmentation.slic() function is used to segment image using k-means clustering.

Syntax : skimage.segmentation.slic(image)

Parameters:

 image : An image

 n_segments : Number of labels

 compactness : Balances color and space proximity.

 max_num_iter : Maximum number of iterations

Return: labels: Integer mask indicating segment labels.

Example

Importing required libraries

from skimage.segmentation import

slic from skimage.data import

astronaut from skimage.color

import label2rgb

Setting the plot size as 15,

15 plt.figure(figsize=(15,15))

Sample Image of scikit-image

package astronaut = astronaut()

Periyar University – CDOE| Self-Learning Material

Applying Simple Linear

Iterative # Clustering on the

image

- 50 segments & compactness = 10

astronaut_segments = slic(astronaut, n_segments=50,

compactness=10) plt.subplot(1,2,1)

Plotting the original image

plt.imshow(astronaut)

plt.subplot(1,2,2)

Converts a label image into

an RGB color image for visualizing

the labeled regions.

plt.imshow(label2rgb(astronaut_segments, astronaut, kind = 'avg'))

Explanation: This technique creates superpixels by grouping pixels in the picture plane

based on their color similarity and closeness. This is done in 5-D space, where XY is the

pixel location. Because the greatest possible distance between two colors in CIELAB space

is restricted, but the spatial distance on the XY plane is dependent on the picture size, we

must normalize the spatial distances in order to apply the Euclidean distance in this 5D

Periyar University – CDOE| Self-Learning Material

space. As a result, a new distance measure that takes superpixel size into account was

created to cluster pixels in this 5D space.

There are many other supervised and unsupervised image segmentation techniques.

This can be useful in confining individual features, foreground isolation, noise reduction,

and can be useful to analyze an image more intuitively. It is a good practice for images to

be segmented before building a neural network model in order to yield effective results.

5.1.1 Graph Cut

A graph cut is the partitioning of a directed graph into two disjoint sets. Graph cuts

can be used for solving many different computer vision problems like stereo depth

reconstruction, image stitching and image segmentation. By creating a graph from image

pixels and their neighbors and introducing an energy or a "cost" it is possible to use a graph

cut process to segment an image in two or more regions. The basic idea is that similar

pixels that are also close to each other should belong to the same partition.

Here’s how to build the graph:

 Every pixel node has an incoming edge from the source node.

 Every pixel node has an outgoing edge to the sink node.

 Every pixel node has one incoming and one outgoing edge to each of its neighbors.

To determine the weights on these edges, you need a segmentation model that

determines the edge weights (representing the maximum flow allowed for that edge)

between pixels and between pixels and the source and sink. As before we call the edge

weight between pixel i and pixel j, wij . Let’s call the weight from the source to pixel i, wsi,

and from pixel i to the sink, wit.

Periyar University – CDOE| Self-Learning Material

Let’s look at using a naive Bayesian classifier from Section 8.2 on the color values of

the pixels. Given that we have trained a Bayes classifier on foreground and background

pixels (from the same image or from other images), we can compute the probabilities pF (Ii)

and pB(Ii) for the foreground and background. Here Ii is the color vector of pixel i.

We can now create a model for the edge weights as follows:

With this model, each pixel is connected to the foreground and background (source and

sink) with weights equal to a normalized probability of belonging to that class. The wij

describe the pixel similarity between neighbors, similar pixels have weight close to,

dissimilar close to 0. The parameter determines how fast the values decay towards zero

with increasing dissimilarity.

Create a file graphcut.py and add the following function that creates this graph from an

image.

Periyar University – CDOE| Self-Learning Material

Here we used a label image with values 1 for foreground training data and -1 for

background training data. Based on this labeling, a Bayes classifier is trained on the RGB

values. Then classification probabilities are computed for each pixel. These are then used

as edge weights for the edges going from the source and to the sink. A graph with n ⇤ m +

2 nodes is created. Note the index of the source and sink, we choose them as the last two

to simplify the indexing of the pixels. To visualize the labeling overlaid on the image we can

use the function contourf() which fills the regions between contour levels of an image (in

this case the label image). The alpha variable sets the transparency. Add the following

function to graphcut.py.

Periyar University – CDOE| Self-Learning Material

Once the graph is built it needs to be cut at the optimal location. The following

function computes the min cut and reformats the output to a binary image of pixel labels.

Output

An example of graph cut segmentation using a Bayesian probability model. Image is down

sampled to size 54*38. (left) label image for model training. (center) training regions shown

on the image. (right) segmentation.

Segmentation with user input

Graph cut segmentation can be combined with user input in a number of ways. For

example, a user can supply markers for foreground and background by drawing on an

image. Another way is to select a region that contains the foreground with a bounding box

Periyar University – CDOE| Self-Learning Material

or using a "lasso" tool.

These images come with ground truth labels for measuring segmentation

performance. They also come with annotations simulating a user selecting a rectangular

image region or drawing on the image with a "lasso" type tool to mark foreground and

background. We can use these user inputs to get training data and apply graph cuts to

segment the image guided by the user input.

The user input is encoded in bitmap images with the following meaning.

Figure: The effect of changing the relative weighting between pixel similarity and class

probability. The same segmentation as in Figure 9.2 with: (a) k = 1, (b) k = 2, (c) k = 5 and

(d) k = 10.

Example of loading an image and annotations and passing that to our graph cut

segmentation routine.

Periyar University – CDOE| Self-Learning Material

First we define a helper function to read the annotation images and format them so we can

pass them to our function for training background and foreground models. The bounding

rectangles contain only background labels. In this case we set the foreground training

region to the whole "unknown" region (the inside of the rectangle). Next we build the graph

and cut it. Since we have user input we remove results that have any foreground in the

marked background area. Last, we plot the resulting segmentation and remove the tick

markers by setting them to an empty list. That way we get a nice bounding box (otherwise

the boundaries of the image will be hard to see in this black and white plot).

Periyar University – CDOE| Self-Learning Material

Figure: Sample graph cut segmentation results using images from the Grab Cut data set.

(left) original image, downsampled. (middle) mask used for training. (right) resulting

segmentation using RGB values as feature vectors.

5.1.2 Segmentation using Clustering

It is a method to perform Image Segmentation of pixel-wise segmentation. In this

type of segmentation, we try to cluster the pixels that are together. There are two

approaches for performing the Segmentation by clustering.

 Clustering by Merging

 Clustering by Divisive

Clustering by merging or Agglomerative Clustering

In this approach, we follow the bottom-up approach, which means we assign the pixel

closest to the cluster. The algorithm for performing the agglomerative clustering as follows:

 Take each point as a separate cluster.

 For a given number of epochs or until clustering is satisfactory.

 Merge two clusters with the smallest inter-cluster distance (WCSS).

 Repeat the above step

The agglomerative clustering is represented by Dendrogram. It can be performed in 3

methods: by selecting the closest pair for merging, by selecting the farthest pair for

merging, or by selecting the pair which is at an average distance (neither closest nor

farthest).

Periyar University – CDOE| Self-Learning Material

Nearest clustering Average Clustering

Farthest Clustering

Clustering by division or Divisive splitting

In this approach, we follow the top-down approach, which means we assign the pixel

closest to the cluster. The algorithm for performing the agglomerative clustering as

follows:

 Construct a single cluster containing all points.

 For a given number of epochs or until clustering is satisfactory.

 Split the cluster into two clusters with the largest inter-cluster distance.

 Repeat the above steps.

K-Means Clustering

K-means clustering is a very popular clustering algorithm which applied when we

have a dataset with labels unknown. The goal is to find certain groups based on some kind

of similarity in the data with the number of groups represented by K. This algorithm is

Periyar University – CDOE| Self-Learning Material

generally used in areas like market segmentation, customer segmentation, etc.

The algorithm for image segmentation works as follows:

1. First, we need to select the value of K in K-means clustering.

2. Select a feature vector for every pixel (color values such as RGB value, texture etc.).

3. Define a similarity measure b/w feature vectors such as Euclidean distance to

measure the similarity b/w any two points/pixel.

4. Apply K-means algorithm to the cluster centers

5. Apply connected component’s algorithm.

6. Combine any component of size less than the threshold to an adjacent component

that is similar to it until you can’t combine more.

The steps for applying the K-means clustering algorithm:

 Select K points and assign them one cluster center each.

 Until the cluster center won’t change, perform the following steps:

 Allocate each point to the nearest cluster center and ensure that each cluster center

has one point.

 Replace the cluster center with the mean of the points assigned to it.

 End

 Example # imports

import numpy as

np import cv2 as

cv

import matplotlib.pyplot as plt

plt.rcParams["figure.figsize"] =

(12,50)

load image

img =

cv.imread('road.jpg') Z =

img.reshape((-1,3))

convert to

Periyar University – CDOE| Self-Learning Material

np.float32 Z =

np.float32(Z)

define stopping criteria, number of clusters(K) and apply

kmeans() # TERM_CRITERIA_EPS : stop when the epsilon

value is reached

TERM_CRITERIA_MAX_ITER: stop when Max iteration is reached

criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 10, 1.0)

fig, ax = plt.subplots(10,2,

sharey=True) for i in range(10):

K = i+3

apply K-means algorithm

ret,label,center=cv.kmeans(Z,K,None,criteria,attempts = 10,

cv.KMEANS_RANDOM_CENTERS) # Now convert back into uint8, and make original

image

center =

np.uint8(center) res =

center[label.flatten()]

res2 = res.reshape((img.shape))

plot the original image and K-means

image ax[i, 1].imshow(res2)

ax[i,1].set_title('K = %s Image'%K)

ax[i, 0].imshow(img)

ax[i,0].set_title('Original

Image')

Periyar University – CDOE| Self-Learning Material

 Image Segmentation for K=3,4,5

 Image Segmentation for K=6,7,8

Periyar University – CDOE| Self-Learning Material

5.1.3 Variational Methods

In the previous sections it was minimizing the cut in a graph but we also saw

examples like the ROF de-noising, k-means and support vector machines. These are

examples of optimization problems. When the optimization is taken over functions, the

problems are called variational problems and algorithms for solving such problems are

called variational methods. Let’s look at a simple and effective variational model.

The Chan-Vese segmentation model assumes a piece-wise constant image model

for the image regions to be segmented. Here we will focus on the case of two regions, for

example foreground and background, but the model extends to multiple regions as well.

The model can be described as follows. If we let a collection of curves separate the image

into two regions Ω1 and Ω2 as the segmentation model energy.

Periyar University – CDOE| Self-Learning Material

Fig: Examples of two-class image segmentation using the normalized cuts algorithm. (left)

original image. (right) segmentation result.

Fig: The piece-wise constant Chan-Vese segmentation model.

The segmentation is given by minima of the Chan-Vese model energy which measures the

deviation from the constant graylevels in each region, c1 and c2.

Here the integrals are taken over each region and the length of the

separating curves are there to prefer smoother solutions.

With a piece-wise constant image U = (1c1 + (2c2 this can we re-written as

Periyar University – CDOE| Self-Learning Material

Where χ1 and χ2 are characteristic (indicator) functions for the two regions5. This

transformation is non-trivial and requires some heavy mathematics that are not needed for

understanding and are well outside the scope of this book.

The point is that this equation is now the same as the ROF equation (1.1) with λ replaced by λ

|c1 c2|. The only difference is that in the Chan-Vese case we are looking for an image U which

is piece-wise constant. It can be shown that thresholding the ROF solution will give a good

minimizer. Minimizing the Chan-Vese model now becomes a ROF de-noising followed by

thresholding

(a) (b) (c)

Examples image segmentation by minimizing the Chan-Vese model using ROF

de-noising.

(a) original image, (b) image after ROF de-noising. (c) final segmentation.

Periyar University – CDOE| Self-Learning Material

In this case we turn down the tolerance threshold for stopping the ROF iterations to

make sure we get enough iterations. Above Examples shows the result on two rather

difficult images.

5.2. OpenCV

OpenCV is the huge open-source library for the computer vision, machine learning,

and image processing and now it plays a major role in real-time operation which is very

important in today’s systems. By using it, one can process images and videos to identify

objects, faces, or even handwriting of a human. When it integrated with various libraries,

such as NumPy, python is capable of processing the OpenCV array structure for analysis.

To Identify image pattern and its various features we use vector space and perform

mathematical operations on these features.

History of Open CV

The first OpenCV version was 1.0. OpenCV is released under a BSD license and

hence it’s free for both academic and commercial use. It has C++, C, Python and Java

interfaces and supports Windows, Linux, Mac OS, iOS and Android. When OpenCV was

designed the main focus was real- time applications for computational efficiency. All things

are written in optimized C/C++ to take advantage of multi-core processing.

Applications of OpenCV

There are lots of applications which are solved using OpenCV, some of them are listed

below

 face recognition

 Automated inspection and surveillance

 number of people – count (foot traffic in a mall, etc)

Periyar University – CDOE| Self-Learning Material

 Vehicle counting on highways along with their speeds

 Interactive art installations

 Anomaly (defect) detection in the manufacturing process (the odd defective products)

 Street view image stitching

 Video/image search and retrieval

 Robot and driver-less car navigation and control

 object recognition

 Medical image analysis

 Movies – 3D structure from motion

 TV Channels advertisement recognition

OpenCV Functionality

Image/video I/O, processing, display (core, imgproc, highgui)

 Object/feature detection (objdetect, features2d, nonfree)

 Geometry-based monocular or stereo computer vision (calib3d, stitching, videostab)

 Computational photography (photo, video, superres)

 Machine learning & clustering (ml, flann)

 CUDA acceleration (gpu)

Periyar University – CDOE| Self-Learning Material

The following images from OpenCV

from the above original image, lots of pieces of information that are present in the original

image can be obtained. Like in the above image there are two faces available and the

person(I) in the images wearing a bracelet, watch, etc so by the help of OpenCV we can

get all these types of information from the original image.

5.2.1 Python Interface

OpenCV is a C++ library with modules that cover many areas of computer vision.

Besides C++ (and C) there is growing support for Python as a simpler scripting language

through a Python interface on top of the C++ code base. The Python interface is still under

development and not all parts of OpenCV are exposed and many functions are

undocumented. This is likely to change as there is an active community behind this

interface.

The old cv module uses internal OpenCV datatypes and can be a little tricky to use

from NumPy. The new cv2 module uses NumPy arrays and is much more intuitive to use.

The module is available as and the old module can be accessed as We will focus on the

cv2 module in this chapter. Look out for future name changes, as well as changes in

function names and definitions in future versions. OpenCV and the Python interface is

under rapid development.

import cv2 import cv2.cv

5.2.2 OpenCV Basics

OpenCV comes with functions for reading and writing images as well as matrix

operations and math libraries.

Reading and writing images

For reading an image, use the imread() function in

OpenCV. imread(filename, flags)

Two arguments:

1. The first argument is the image name, which requires a fully qualified pathname to the

file.

2. The second argument is an optional flag that lets you specify how the image should

be represented. OpenCV offers several options for this flag, but those that are most

common include:

Periyar University – CDOE| Self-Learning Material

 cv2.IMREAD_UNCHANGED or -1

 cv2.IMREAD_GRAYSCALE or 0

 cv2.IMREAD_COLOR or 1

flag values

img_color = cv2.imread('test.jpg',1)

img_grayscale =

cv2.imread('test.jpg',0)

img_unchanged =

cv2.imread('test.jpg',-1) Color

spaces

In OpenCV images are not stored using the conventional RGB color channels, they

are stored in BGR order (the reverse order). When reading an image the default is BGR,

however there are several conversions available. Color space conversion are done using

the function cvtColor().

im =

cv2.imread(’empire.jpg’) #

create a grayscale version

gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

After the source image there is an OpenCV color conversion code. Some of the most

useful conversion codes are:

 cv2.COLOR_BGR2GRAY

 cv2.COLOR_BGR2RGB

 cv2.COLOR_GRAY2BGR

In each of these, the number of color channels for resulting images will match the

conversion code (single channel for gray and three channels for RGB and BGR).

Displaying an Image

In OpenCV, you display an image using the imshow()

function. imshow(window_name, image)

This function also takes two arguments:

1. The first argument is the window name that will be displayed on the window.

2. The second argument is the image that you want to display.

Periyar University – CDOE| Self-Learning Material

To display multiple images at once, specify a new window name for every image you

want to display.

The imshow() function is designed to be used along with the waitKey() and

destroyAllWindows() / destroyWindow() functions.

 It takes a single argument, which is the time (in milliseconds), for which the window

will be displayed.

 If the user presses any key within this time period, the program continues.

 If 0 is passed, the program waits indefinitely for a keystroke.

 You can also set the function to detect specific keystrokes like the Q key or the ESC

key on the keyboard, thereby telling more explicitly which key shall trigger which

behavior.

The code examples below show how the imshow() function is used to display the images

you read in.

#Displays image inside a window

cv2.imshow('color image',img_color)

cv2.imshow('grayscale

image',img_grayscale)

cv2.imshow('unchanged

image',img_unchanged)

Waits for a

keystroke

cv2.waitKey(0)

Destroys all the windows

created

cv2.destroyAllwindows()

The three output screens shown below, you can see:

1. The first image is displayed in color

2. The next as grayscale

3. The third is again in color, as this was the original format of the image (which was

Periyar University – CDOE| Self-Learning Material

read using cv2.IMREAD_UNCHANGED)

Displaying an image in color using the Displaying an image in grayscale

using imshow() function the imshow() function.

Displaying an unchanged image using the imshow() function.

5.2.3 Processing Video

Video processing consists in signal processing employing statistical analysis and

video filters to extract information or perform video manipulation. Basic video processing

techniques include trimming, image resizing, brightness and contrast adjustment, fade in

and fade out, amongst others. More complex video processing techniques, also known as

Computer Vision Techniques, are based on image recognition and statistical analysis to

perform tasks such as face recognition, detection of certain image patterns, and computer-

human interaction.

Periyar University – CDOE| Self-Learning Material

Video files can be converted, compressed or decompressed using particular

software devices. Usually, compression involves a reduction of the bitrate (the number of

bits processed per time unit), which makes it possible to store the video digitally and stream

it over the network. Uncompressed audio or video usually are called RAW streams, and

although different formats and codecs for raw data exist, they appear to be too heavy (in

bitrate terms) to be stored or streamed over the network in these formats.

Video input

Reading video from a camera is very well supported in OpenCV. A basic complete

example that captures frames and shows them in an OpenCV window looks like this.

Example

import cv2

setup video capture

cap =

cv2.VideoCapture(0)

while True:

ret,im = cap.read()

cv2.imshow(’video test’,im) key

= cv2.waitKey(10)

if key == 27:

break

if key == ord(’ ’):

cv2.imwrite(’vid_result.jpg’,im)

The capture object VideoCapture captures video from cameras or files. Here w pass

an integer at initialization. This is the id of the video device, with a single camera connected

this is 0. The method read() decodes and returns the next video frame. The first value is a

success flag and the second the actual image array. The waitKey() function waits for a key

to be pressed and quit the application if the ’esc’ key (Ascii number 27) is pressed or saves

the frame if the ’space’ key is pressed.

Periyar University – CDOE| Self-Learning Material

The camera input and show a blurred (color) version of the input in an OpenCV window

import cv2

setup video capture

cap = cv2.VideoCapture(0)

get frame, apply Gaussian smoothing, show

result while True:

ret,im = cap.read()

blur =

cv2.GaussianBlur(im,(0,0),5)

cv2.imshow(’camera blur’,blur)

if cv2.waitKey(10) == 27:

break

Each frame is passed to the function GaussianBlur() which applies a Gaussian filter to the

image. In this case we are passing a color image so each color channel is blurred

separately. The function takes a tuple for filter size and the standard deviation for the

Gaussian function (in this case 5). If the filter size is set to zero, it will automatically be

determined from the standard deviation.

Reading video from files works the same way but with the call to VideoCapture()

taking the video filename as input.

capture = cv2.VideoCapture(’filename’)

Screenshot of a blurred video of the author as he’s writing this chapter.

Periyar University – CDOE| Self-Learning Material

5.2.4 Video Tracking

Video tracking is an application of object tracking where moving objects are located

within video information. Hence, video tracking systems are able to process live, real-time

footage and also recorded video files. The processes used to execute video tracking tasks

differ based on which type of video input is targeted. Different videotracking applications

play an important role in video analytics, in scene understanding for security and

surveillance, military, transportation, and other industries. Today, a wide range of real-time

computer vision and deep learning applications use videotracking methods.

Optical flow Optical flow (sometimes called optic flow) is the image motion of objects as the

objects, scene or camera moves between two consecutive images. It is a 2D vector field of

within- image translation. Is is a classic and well studied field in computer vision with many

successful applications in for example video compression, motion estimation, object

tracking and image segmentation.

Optical flow relies on three major assumptions.

1. Brightness constancy: The pixel intensities of an object in an image does not change

between consecutive images.

2. Temporal regularity: The between-frame time is short enough to consider the motion

change between images using differentials (used to derive the central equation below).

3. Spatial consistency: Neighboring pixels have similar motion.

Periyar University – CDOE| Self-Learning Material

Optical flow vectors (sampled at every 16th pixel) shown on video of a translating book and

a turning head.

Periyar University – CDOE| Self-Learning Material

Lucas-Kanade method

Tracking is the process of following objects through a sequence of images or video.

The most basic form of tracking is to follow interest points such as corners. A popular

algorithm for this is the Lucas-Kanade tracking algorithm which uses a sparse optical flow

algorithm.

OpenCV is a huge open-source library for computer vision, machine learning, and

image processing. OpenCV supports a wide variety of programming languages like Python,

C++, Java, etc. It can process images and videos to identify objects, faces, or even the

handwriting of a human. When it is integrated with various libraries, such as Numpy which

is a highly optimized library for numerical operations, then the number of weapons

increases in your Arsenal i.e whatever operations one can do in Numpy can be combined

with OpenCV.

 Points will be tracked using the Lucas-Kanade Algorithm provided by

OpenCV, i.e, cv2.calcOpticalFlowPyrLK().

Syntax: cv2.calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts[, winSize[,

maxLevel[, criteria]]])

Parameters:

prevImg – first 8-bit input image

nextImg – second input image

prevPts – vector of 2D points for which the flow needs to be found.

winSize – size of the search window at each pyramid level.

maxLevel – 0-based maximal pyramid level number; if set to 0, pyramids are not used

(single level), if set to 1, two levels are used, and so on.

criteria – parameter, specifying the termination criteria of the iterative search algorithm.

Return:

nextPts – output vector of 2D points (with single-precision floating-point coordinates)

containing the calculated new positions of input features in the second image; when

OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as

in the input.

status – output status vector (of unsigned chars); each element of the vector is set to 1 if

the flow for the corresponding features has been found, otherwise, it is set to 0.

Periyar University – CDOE| Self-Learning Material

err – output vector of errors; each element of the vector is set to an error for the

corresponding feature, type of the error measure can be set in flags parameter; if the

flow wasn’t found then the error is not defined (use the status parameter to find such

cases).

Example

import numpy as np

import cv2

cap =

cv2.VideoCapture('sample.mp4') #

params for corner detection

feature_params = dict(maxCorners = 100, qualityLevel = 0.3, minDistance = 7, blockSize = 7

)

Parameters for lucas kanade optical flow

lk_params = dict(winSize = (15, 15), maxLevel = 2, criteria =

(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))

Create some random colors

color = np.random.randint(0, 255, (100,

3)) # Take first frame and find corners

in it

ret, old_frame = cap.read()

old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)

p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)

Create a mask image for drawing

purposes mask =

np.zeros_like(old_frame)

while(1):

ret, frame = cap.read()

frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

calculate optical flow

Periyar University – CDOE| Self-Learning Material

p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)

Select good points

good_new = p1[st ==

1] good_old = p0[st

== 1]

draw the tracks

for i, (new, old) in enumerate(zip(good_new,

good_old)): a, b = new.ravel()

c, d = old.ravel()

mask = cv2.line(mask, (a, b), (c,

d), color[i].tolist(), 2)

frame = cv2.circle(frame, (a, b),

5, color[i].tolist(), -1)

img = cv2.add(frame,

mask)

cv2.imshow('frame', img)

k =

cv2.waitKey(25) if

k == 27:

break

Updating Previous frame and

points old_gray =

frame_gray.copy()

p0 = good_new.reshape(-1,

1, 2)

cv2.destroyAllWindows()

cap.release()

Periyar University – CDOE| Self-Learning Material

Output

Unit Summary:

Image Segmentation is the process of partitioning an image into distinct regions or segments,

often to simplify or change the representation of an image into something more meaningful and

easier to analyze. OpenCV offers a comprehensive suite of tools for image and video

processing, with a user-friendly Python interface that facilitates rapid development and

integration of computer vision solutions.

Let us sum up:

Image Segmentation is the process of dividing an image into distinct, meaningful regions to

simplify analysis. Key methods include:

Graph Cuts:Models the segmentation problem as a graph where nodes represent pixels or

superpixels and edges represent similarity between them. The goal is to find a cut that

minimizes a cost function balancing the segmentation's smoothness and fidelity.

Segmentation Using Clustering:roups pixels into clusters based on feature similarity, such as

color or texture. Common algorithms include K-Means and Mean Shift.

Variational Methods:Formulates segmentation as an optimization problem, minimizing an

objective function to find the best region boundaries. Techniques like the Chan-Vese model use

level sets for evolving contours.

OpenCV (Open Source Computer Vision Library) provides tools for image and video

processing, with a focus on practical applications and ease of use.

Periyar University – CDOE| Self-Learning Material

Python Interface:Allows for integrating OpenCV functions into Python programs, facilitating

rapid development and prototyping in computer vision tasks.

OpenCV Basics:Includes fundamental operations such as image reading, writing, resizing,

cropping, and applying basic filters and transformations.

Processing Video:Involves capturing and processing video streams, including frame extraction

and applying filters to video frames.

Tracking: Techniques for tracking objects or features across frames in a video. OpenCV offers

various tracking algorithms, including Mean Shift and Kalman Filters.

Check your progress:

1. Which of the following methods is used to segment images by minimizing a cost function that

balances between smoothness and fidelity?

A) K-Means Clustering

B) Mean Shift Clustering

C) Graph Cuts

D) Chan-Vese Model

Answer: C

Explanation: Graph Cuts involves modeling the segmentation problem as a graph where nodes

represent pixels and edges represent the similarity between pixels. The method minimizes a

cost function to find an optimal partition, balancing the smoothness of the segmentation with its

fidelity to the actual image content.

2. Which image segmentation technique uses clustering algorithms to group pixels into

segments based on their feature similarity?

A) Variational Methods

B) Graph Cuts

C) Segmentation Using Clustering

D) Epipolar Geometry

Periyar University – CDOE| Self-Learning Material

Answer: C

Explanation: Segmentation Using Clustering involves grouping pixels into clusters based on

feature similarity (like color or texture) using clustering algorithms such as K-Means. This

method is useful for segmenting images where regions with similar attributes need to be

identified.

3. What is the primary approach of Variational Methods in image segmentation?

A) Using pre-defined labels to segment images

B) Applying geometric transformations to images

C) Formulating segmentation as an optimization problem to minimize an objective function

D) Using histograms of pixel intensities for segmentation

Answer: C

Explanation: Variational Methods approach image segmentation by formulating it as an

optimization problem. The goal is to minimize an objective function that defines the best

segmentation boundaries based on various criteria.

4. What advantage does the Python interface of OpenCV provide?

A) It supports direct hardware interfacing for real-time image processing.

B) It simplifies the integration of computer vision algorithms into Python applications for rapid

development.

C) It offers advanced 3D rendering capabilities.

D) It automates image segmentation without manual input.

Answer: B

Explanation: The Python interface of OpenCV allows developers to rapidly develop and

prototype computer vision algorithms in Python, providing a user-friendly way to implement and

test vision-based applications.

5. Which function in OpenCV is used for basic image manipulation tasks like resizing or

cropping?

A) cv2.VideoCapture

B) cv2.resize

C) cv2.imshow

D) cv2.dilate

Periyar University – CDOE| Self-Learning Material

Answer: B

Explanation: The cv2.resize function is used in OpenCV for resizing images. Basic image

manipulation tasks such as cropping are performed using other related functions provided by

the library.

5. In OpenCV, which function is used to track objects or features across video frames?

A) cv2.findContours

B) cv2.TrackObject

C) cv2.VideoCapture

D) cv2.Tracker

Answer: D

Explanation: The cv2.Tracker class in OpenCV provides various tracking algorithms to follow

objects or features across video frames. This functionality is essential for applications involving

object tracking and motion analysis.

6. To capture video from a camera and process it frame by frame in OpenCV, which function is

typically used?

A) cv2.imshow

B) cv2.VideoCapture

C) cv2.drawMatches

D) cv2.findContours

Answer: B

Explanation: cv2.VideoCapture is used to capture video from a camera or read video files. It

allows for processing each frame individually, which is crucial for tasks such as real-time video

analysis and frame extraction.

Glossary

Graph Cuts:A method for image segmentation that models the problem as a graph. Pixels or

superpixels are represented as nodes, and the edges between them represent similarity. The

goal is to find a partition (or "cut") that minimizes a cost function balancing smoothness and

fidelity.

Segmentation Using Clustering: A technique that groups pixels into clusters based on feature

similarity, such as color or texture. Common algorithms include K-Means and Mean Shift.

Periyar University – CDOE| Self-Learning Material

Variational Methods:Techniques that formulate image segmentation as an optimization

problem. An objective function is minimized to find the best boundaries between segments.

Methods like the Chan-Vese model use level sets for evolving contours.

Python Interface: The interface provided by OpenCV for integrating computer vision functions

into Python programs. It simplifies the development and testing of computer vision algorithms in

Python.

OpenCV Basics: Fundamental operations provided by OpenCV for image processing, including

reading, writing, resizing, cropping, and applying basic filters and transformations.

Processing Video: Involves capturing and manipulating video streams using OpenCV. This

includes tasks like extracting frames, applying filters, and analyzing video content.

Tracking: Techniques for following objects or features across frames in a video. OpenCV

provides algorithms such as Mean Shift and Kalman Filters for object tracking.

Books

1. "Computer Vision: Algorithms and Applications" by Richard Szeliski

2. "Digital Image Processing" by Rafael C. Gonzalez and Richard E. Woods

3. Learning OpenCV 4: Computer Vision with Python" by Adrian Kaehler and Gary Bradski

Web Resources

1. Graph Cuts and Image Segmentation (PDF from Carnegie Mellon University)

2. Image Segmentation Using K-Means Clustering (Towards Data Science)

3. OpenCV Python Tutorials (OpenCV Documentation)

4. Object Tracking with OpenCV (OpenCV Documentation)

BEST OF LUCK

